
Additive Approximation for Bounded Degree
Survivable Network Design

Lap Chi Lau
∗

CSE Dept.
The Chinese Univ. of Hong Kong

chi@cse.cuhk.edu.hk

Mohit Singh
†

Tepper School of Business
Carnegie Mellon University

mohits@andrew.cmu.edu

ABSTRACT
We study a general network design problem with additional de-
gree constraints. Given connectivity requirements ruv for all
pairs of vertices, a Steiner network is a graph in which there are
at least ruv edge-disjoint paths between u and v for all pairs
u, v. In the MINIMUM BOUNDED-DEGREE STEINER NET-
WORK problem, we are given an undirected graph G with an
edge cost for each edge, a connectivity requirement ruv for
each pair of vertices u and v, and a degree upper bound for each
vertex v. The task is to �nd a minimum cost Steiner network
which satis�es all the degree upper bounds.

The aim of this paper is to design approximation algorithms
that minimize the total cost and the degree violation simultane-
ously. Our main results are the following:

• There is a polynomial time algorithm which returns a
Steiner forest of cost at most 2OPT and the degree viola-
tion at each vertex is at most 3, where OPT is the cost of
an optimal solution which satis�es all the degree bounds.

• There is a polynomial time algorithm which returns a
Steiner network of cost at most 2OPT and the degree vi-
olation at each vertex is at most 6rmax + 3, where OPT
is the cost of an optimal solution which satis�es all the
degree bounds, and rmax := maxu,v{ruv}.

These results achieve the best known guarantees for both the
total cost and the degree violation simultaneously. As a corol-
lary, these provide the �rst additive approximation algorithms
for �nding low degree subgraphs including Steiner forests, k-
edge-connected subgraphs, and Steiner networks. The algo-
rithms develop on the iterative relaxation method applied to a
natural linear programming relaxation as in [11, 17, 24]. The
new algorithms avoid paying a multiplicative factor of two on
the degree bounds even though the algorithm can only pick
∗Research supported by RGC grant 2150529.
†Research supported by NSF grant CCF-0728841.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro�t or commercial advantage and that copies
bear this notice and the full citation on the �rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior speci�c
permission and/or a fee.
STOC'08, May 17�20, 2008, Victoria, British Columbia, Canada.
Copyright 2008 ACM 978-1-60558-047-0/08/05 ...$5.00.

edges with fractional value 1
2

. This is based on a stronger char-
acterization of the basic solutions of the linear programming
relaxation. The analysis of the algorithm is nearly tight.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complexity]: Non
Numerical Algorithms and Problems�Computations on dis-
crete structures; G.2.2 [Discrete Mathematics]: Graph The-
ory�Network Problems, Trees.

General Terms
Algorithms, Theory

Keywords
Approximation Algorithms, Steiner Trees, Survivable Network
Design, Bounded Degree, Iterative Rounding.

1. INTRODUCTION
Network design plays a central role in combinatorial opti-

mization and approximation algorithms. Developments in this
area have led to general algorithmic techniques, and also pro-
vide useful models for practical applications. Much effort has
been put on designing approximation algorithms for network
design problems with additional degree constraints. These prob-
lems generalize key problems in combinatorial optimization,
and also have applications in various areas including VLSI de-
sign, vehicle routing and communication networks [3, 7, 19,
21, 26]. In these applications, degree constraints occur as a
natural modelling tool for workload of nodes. For example, in
typical applications of network design problems to multicast-
ing, the degree constraints on switches correspond to a bound
on the multicast copies a switch can make in the network [3].

In this paper we study a general network design problem
with additional degree constraints. Given connectivity require-
ments ruv for all pairs of vertices, a Steiner network is a graph
in which there are at least ruv edge-disjoint paths between u
and v for all pairs u, v. In the MINIMUM BOUNDED-DEGREE
STEINER NETWORK problem, we are given an undirected graph
G with an edge cost for each edge, a connectivity requirement
for each pair of vertices, and a degree upper bound Bv for each
vertex v. The task is to �nd a minimum cost Steiner network H
of G satisfying all the degree bounds, that is, degH(v) ≤ Bv

for all v. This problem captures many well-studied network
design problems as special cases; for example, a Steiner for-
est is a Steiner network with ruv ∈ {0, 1} for all pairs. Even

the feasibility problem of �nding a Steiner network satisfying
all the degree bounds is already NP-hard. Hence the MINI-
MUM BOUNDED-DEGREE STEINER NETWORK problem has
two optimization objectives: to minimize the total cost and to
minimize the degree violation. The aim of this paper is to de-
sign approximation algorithms that optimizes both objectives
simultaneously. Our main results are the following.

THEOREM 1.1. There exists a polynomial time algorithm
for the MINIMUM BOUNDED-DEGREE STEINER FOREST prob-
lem which returns a Steiner forest F of cost at most 2OPT and
degree violation at most 3 (i.e. dF (v) ≤ Bv + 3 ∀v ∈ F).
Here OPT is the cost of an optimal solution which satis�es all
the degree bounds.

In this extended abstract, we prove a weaker guarantee than
stated in Theorem 1.1 where the degree bound of a vertex v
is bounded by Bv + 4. The above result also generalizes to
MINIMUM BOUNDED DEGREE STEINER NETWORK problem
and we give the following result.

THEOREM 1.2. There exists a polynomial time algorithm
for the MINIMUM BOUNDED-DEGREE STEINER NETWORK
problem which returns a Steiner network H of cost at most
2OPT and degree violation at most 6rmax + 3. Here OPT is
the cost of an optimal solution which satis�es all the degree
bounds, and rmax := maxu,v{ruv}.

Previously the best known guarantees on the degree for both
Steiner forest and Steiner network are 2Bv + 3 in [17], even
when there are no costs on the edges. Theorem 1.1 and 1.2
provide the �rst additive approximation algorithms that violate
the degrees by at most a constant for a large class of prob-
lems, including Steiner forests (+3), k-edge-connected sub-
graphs (+O(k)), and Steiner networks (+O(rmax)). More-
over, these results can be achieved while simultaneously match-
ing the best known guarantees for the minimum cost Steiner
forest and Steiner network problems [1, 11]. These provides a
unifying algorithmic framework for many well-studied prob-
lems in the literature. Theorem 1.2 can further be general-
ized to element connectivity - the most general model where
a 2-approximation algorithm for min-cost Steiner network is
known.

The algorithms develop on the iterative relaxation method
applied to a linear programming relaxation as in [11, 17, 24].
The analysis on the linear programming relaxation is nearly
tight. There are examples in which the optimal fractional so-
lution has maximal degree B but any integer solution would
have maximal degree at least B+2 for Steiner forests [17], and
at least B+Ω(rmax) for Steiner networks as shown in Figure 6.

1.1 Techniques
The algorithms develop on the iterative relaxation method

introduced in [17, 24], which adapts Jain's iterative rounding
method [11] to the MINIMUM BOUNDED-DEGREE STEINER
NETWORK problem. The approach in [17] relies on the fol-
lowing lemma about the basic solutions of the linear program
for Steiner networks: �If every vertex with a degree constraint
has degree at least 5, then in any basic solution there is an edge
e with xe ≥ 1

2
.� This lemma leads to a new relaxation step to

Jain's iterative rounding framework to deal with degree bounds:
If there is a vertex with degree at most 4, then the degree con-
straint for that vertex is removed. This relaxation step only in-
curs an additive constant +3 on the degree bounds. After this

step, we can always pick an edge with xe ≥ 1
2

as in Jain's ap-
proach, and hence the cost and the degrees are violated by at
most a multiplicative factor of 2. As illustrated in the exam-
ple in Figure 1, the algorithm in [17] may actually violate the
degree bounds by a multiplicative factor of 2. Hence, a multi-
plicative factor of 2 seems to be a natural limit in the analysis
of the former approach; this is best illustrated in Figure 1.

To achieve additive approximation on the degree bounds, the
challenge is to avoid paying a multiplicative factor of 2 on the
degree bounds when picking edges with value 1

2
. Note that such

edges are inevitable as a factor of 2 on the cost is best possible
using the linear program relaxation for Steiner networks. In our
algorithm for Steiner forests, we �rst generalize the relaxation
step to remove the degree constraint of every vertex with degree
at most Bv+4, which is possible since the degree bounds would
only be violated by at most 4. The main technical contribution
of this paper is the following lemma about the basic solutions:
�If every vertex with degree constraint has degree at least Bv +
4, then in any basic solution there is an edge with xe ≥ 1

2
between two vertices without degree constraints.� This leads
us to a modi�ed iterative algorithm that only selects edges with
xe ≥ 1

2
between two vertices without degree constraints, which

is a key difference from existing iterative rounding algorithms
that pick edges depending only on the fractional values. For
example, in Figure 1, the algorithm will only choose edges from
{xi, yi} and return the solution in (c). By only choosing those
edges, degree constraints would not be violated when they are
present, and are only violated by at most an additive factor of 4
when they are removed.

This approach can be extended to Steiner networks, by prov-
ing that there are edges with xe ≥ 1

2
between two low degree

vertices in any basic solution. Selecting these edges only results
in an additive violation which depends on the parameter rmax.
The proofs of these characterizations of the basic solutions re-
quire new ideas on the counting argument (which has become
more involved since edges with xe ≥ 1

2
are not allowed to be

picked if there is an endpoint with degree constraint present),
and also crucially exploit the parameter rmax.

1.2 Related Work
For the MINIMUM STEINER NETWORK problem, Jain [11]

introduced the iterative rounding method to obtain a 2-approximation
algorithm, improving on a long line of earlier research that ap-
plied primal-dual methods to these problems. For bounded-
degree spanning trees and Steiner trees, Fürer and Raghavachari [9]
gave an approximation algorithm which violates the degrees
by at most 1. This result has generated much interest in ob-
taining approximation algorithms for network design problems
with degree constraints [14, 15, 12, 17, 8, 20, 4, 5, 21, 22, 10,
24].

A highlight of this line of research is an (1, Bv+2)-approximation
algorithm1 for the MINIMUM BOUNDED-DEGREE SPANNING
TREE problem by Goemans [10]. Recently, the iterative relax-
ation method (which is based on the iterative rounding method
of Jain) has been used to obtain the best known bounds for these
problems: (1, Bv +1) for spanning trees [24], and (2, 2Bv +3)
for arborescence, Steiner forests and Steiner networks [17].
1An (α, f(Bv))-approximation algorithm for the MINIMUM
BOUNDED-DEGREE STEINER NETWORK problem is a poly-
nomial time algorithm which returns a solution of cost at most
α·OPT and deg(v) ≤ f(Bv) for all v, where OPT is the optimal
cost of a Steiner Network with deg(v) ≤ Bv for all v.

r

x

x1 x2 xk y1 y2 yk

y

r

x

x1 x2 xk y1 y2 yk

y

r

x

x1 x2 xk y1 y2 yk

y

r

x

x1 x2 xk y1 y2 yk

y

r

x

x1 x2 xk y1 y2 yk

y

r

x

x1 x2 xk y1 y2 yk

y

(a) (b) (c)

Figure 1: The original graph is shown in (a). There are degree constraints on x and y, both are dk/2e. The connectivity
requirements are 1 for all pair of vertices. The fractional solution with all edges having value 1/2 is a basic solution. The
algorithm insolution in (b) where the degrees bounds are violated by a factor of 2, although there is an integer solution as
shown in (c) where the degrees bounds are violated by at most 1.

Recently, in independent work, Bansal et al [2] obtained an
(1

ε
, Bv

1−ε
+4) approximation algorithm for the MINIMUM BOUNDED

DEGREE ARBORESCENCE problem for 0 < ε ≤ 1
2

. Moreover,
they obtain the �rst additive approximation algorithm on the
bounded-degree arborescence problem which violates the de-
grees by at most 2. However, in order to obtain additive guar-
antees on the degree bounds, the cost of the arborescence be-
comes unbounded. They show that this cost-degree tradeoff in
their result is actually best possible using the natural linear pro-
gramming relaxation [2], which is an exact formulation when
degree constraints are not present. In contrast, our results show
that it is possible to achieve additive approximation on the de-
gree bounds for the minimum bounded-degree Steiner network
problems, while matching the best known approximation on the
cost. Finally, we remark that both results develop on the itera-
tive relaxation method in [11, 17, 24], which provides a unify-
ing framework to achieve (nearly) tight analysis for the natural
linear programming relaxations of network design problems.

2. MINIMUM BOUNDED DEGREE
STEINER FOREST

2.1 Background
Our algorithm develops on the previous work in [11, 17,

24]; we �rst review some necessary background. We begin
by formulating a linear program for the problem. Set f(S) =
maxu∈S,v /∈S ruv for each subset S ⊆ V . For the BOUNDED
DEGREE STEINER FOREST problem f(S) is {0, 1}-valued since
ruv ∈ {0, 1} for all u, v ∈ V . It is known that f is a weakly
supermodular function [11], that is, for every two subsets X
and Y , either

f(X) + f(Y) ≤ f(X ∩ Y) + f(X ∪ Y)

or f(X) + f(Y) ≤ f(X − Y) + f(Y −X).

For a subset U ⊆ E, we denote x(U) :=
P

e∈U xe; for a sub-
set S ⊆ V , δ(S) denotes the set of edges with exactly one end-
point in S, and d(S) := |δ(S)|. The following is a linear pro-
gramming formulation for the MINIMUM BOUNDED DEGREE
STEINER FOREST problem, in which the degree constraints are
on a subset of vertices W ⊆ V .

(LP) minimize
X
e∈E

ce xe

subject to x(δ(S)) ≥ f(S) ∀S ⊆ V

x(δ(v)) ≤ Bv ∀ v ∈ W

xe ≥ 0 ∀ e ∈ E

For a subset S ⊆ V , the corresponding constraint x(δ(S)) ≥
f(S) de�nes a vector in R|E|: the vector has an 1 correspond-
ing to each edge e ∈ δ(S), and a 0 otherwise. We call this
vector the characteristic vector of δ(S), and denote it by χδ(S).
Let F = {S | x(δ(S)) = f(S)} be the set of tight constraints
from the connectivity requirement constraints. Two sets X, Y
are intersecting if X ∩Y , X −Y and Y −X are nonempty. A
family of sets is laminar if no two sets are intersecting. Since

x(δ(X)) + x(δ(Y)) ≥ x(δ(X ∩ Y)) + x(δ(X ∪ Y)) and

x(δ(X)) + x(δ(Y)) ≥ x(δ(X − Y)) + x(δ(Y −X))

for any two subsets X and Y and f is weakly supermodular,
it follows from standard uncrossing arguments (see e.g. [11,
17]) that a basic solution of the above linear program is charac-
terized by a laminar family of tight constraints. The following
Lemma 2.1 is proved in [17].

LEMMA 2.1. Let the requirement function f of (LP) be weakly
supermodular, and let x be a basic solution of (LP) such that
0 < xe < 1 for all edges e ∈ E. Then, there exists a laminar
family L of tight sets and a set T ⊆ W such that:

1. x is the unique solution to: {x(δ(v)) = Bv,∀v ∈ T}S {x(δ(S)) = f(S), ∀S ∈ L}.

2. The vectors χ
δ(S) for S ∈ L and χ

δ(v) for v ∈ T are
linearly independent.

3. |E| = |L|+ |T |.
4. For any set S ∈ L, χ

δ(S) 6= χ
δ(v) for any v ∈ W .

The laminar family L obtained in Lemma 2.1 de�nes a di-
rected forest L in which nodes correspond to sets in L and there

exists an edge from set R to set S if R is the smallest set con-
taining S. We call R the parent of S and S the child of R. A
parent-less node is called a root and a childless node is called
a leaf. Given a node R, the subtree rooted at R consists of R
and all its descendants. We say a vertex v is owned by a set S
if v ∈ S and S is the smallest set in L containing v.

2.2 Iterative Algorithm
In this extended abstract, we present an algorithm proving the

relaxed version of Theorem 1.1 which returns a Steiner Forest
of cost at most 2OPT with degF (v) ≤ Bv + 4 for each v ∈ V .
The proof of Theorem 1.1 goes along similar lines but has more
case analysis.

Our algorithm is an iterative relaxation algorithm as shown
in Figure 2. The main difference from the previous iterative
rounding algorithms is in Step 2d, where a heavy edge is picked
only if both endpoints do not have degree constraints. This
is the key step to avoid a multiplicative factor of 2 on the de-
gree bounds. Also, by only picking edges with no degree con-
straints, there is no need to update the degree bounds fraction-
ally as in [17]. Note also that the relaxation step has been gen-
eralized to remove a degree constraint when a vertex has degree
at most Bv + 4.

Minimum Bounded Degree Steiner Forest

1. Initialization F ← ∅, f ′(S) ← f(S) ∀S ⊆ V .

2. While F is not a Steiner forest do

(a) Computing a basic optimal solution:
Find a basic optimal solution x satisfying f ′ and
remove every edge e with xe = 0.

(b) Removing a degree constraint:
For every v ∈ W with degree at most Bv + 4,
remove v from W .

(c) Picking an 1-edge:
For each edge e = {u, v} with xe = 1, add e to
F , remove e from G, and decrease Bu, Bv by 1.

(d) Picking a heavy edge with no degree constraints:
For each edge e = {u, v} with xe ≥ 1

2
and

u, v /∈ W , add e to F and remove e from G.
(e) Updating the connectivity requirements:

Set f ′(S) ← f(S)− δF (S).

3. Return F .

Figure 2: An iterative algorithm for the MINIMUM
BOUNDED DEGREE STEINER FOREST problem.

The following lemma is in the heart of the algorithm, which
shows that the algorithm will always terminate successfully.

LEMMA 2.2. Every basic solution x of (LP) must satisfy
one of the following:

1. There is an edge e with xe = 0 or xe = 1.

2. There is an edge e = {u, v} with xe ≥ 1
2

and u, v /∈ W .

3. There is a vertex v ∈ W with deg(v) ≤ Bv + 4.

v
u

+1

+1

S

Figure 3: Rule (2) of the token assignment scheme. This is a new
rule which is useful in collecting extra token for S. Here, the degree
constraint for vertex u has been removed but the degree constraint
for vertex v is present.

Note that the updated connectivity requirement function f ′ is
also a weakly supermodular function. With Lemma 2.2, using
a simple inductive argument as in [17], it can be shown that
the algorithm returns a Steiner forest of cost at most twice the
optimal cost and the degree of each vertex is at most Bv + 4.
The rest of this section is devoted to the proof of Lemma 2.2.

2.3 A New Counting Argument
The proof of Lemma 2.2 is by contradiction. Let L be the

laminar family and T ⊆ W be the set of tight vertices de�ning
the basic optimal solution x as in Lemma 2.1. The contradic-
tion is obtained by a counting argument. Each edge in E is
assigned two tokens. Then the tokens will be redistributed such
that each member of L and each vertex in T get at least two
tokens, and there are still some extra tokens left. This will give
us a contradiction to Lemma 2.1 (iii) that |E| = |L|+ |T |.

We say an edge is heavy if xe ≥ 1
2

. If conditions of Lemma 2.2
do not hold, we must have that there is no 0-edge and no 1-edge,
every heavy edge has an endpoint in W , and each vertex v ∈ W
has at least Bv + 5 edges incident at it.
Token assignment scheme: The two tokens for an edge are
assigned by the following rules.

1. One token of e is assigned to u and the other token of e
is assigned to v.

2. If e = (u, v) is a heavy edge with v ∈ W and u is not
contained in the smallest set in L containing v, then the
token of e for v is reassigned to the smallest set S ∈ L
containing both u and v.

Classes: Let R be a set in L. An edge e = {u, v} is an out-
heavy edge of R if u ∈ R \W and v ∈ W \ R and xe ≥ 1

2
.

The following de�nition is important to the analysis. For a set
R ∈ L, we call R is of:

• Class Ia: if |δ(R)| = 2 and R has one out-heavy edge e
with xe > 1

2
.

• Class Ib: if R has two out-heavy edges.

• Class IIa: if |δ(R)| = 3 and xe < 1
2

for each edge
e ∈ δ(R).

• Class IIb: if R has one out-heavy edge.

• Class III: otherwise.

1

4

3

4 2

1

2

1

2

1
2

11

3

1

3

1

3

1

4
6

1

6

16

1 1

4

IIbIIa III

Ia Ib

Figure 4: The �gure shows examples of sets of each class. A ver-
tex without degree constraint is white, otherwise it is black. (An
endpoint without a vertex shown means that this information is not
important.) A heavy edge is represented by a thick line. Note the
de�nition of Class Ia, Class Ib and Class II require out-heavy edges.
The rightmost example is a Class III set, although it has a heavy
edge.

The following lemma shows that the tokens can be redis-
tributed so that each member of L and each vertex in W gets
at least two tokens. The proof is by induction on the laminar
family.

LEMMA 2.3. For any subtree of the laminar familyL rooted
at S, we can redistribute tokens in S such that

1. Every vertex in T ∩ S gets at least two tokens.

2. Class I sets in the subtree get at least two tokens.

3. Class II sets in the subtree get at least three tokens.

4. Class III sets in the subtree get at least four tokens.
PROOF. Here is a brief outline of the proof. First we show

in Claim 2.4 that a set owning at least two vertices in W can
collect enough tokens; this uses the fact that f is a 0-1 function.
Then Claim 2.5 and Claim 2.6 are used to show that a set own-
ing exactly one vertex in W can collect enough tokens. Then
the remaining cases consider sets which do not own any vertex
in W , which rely crucially on Claim 2.7. We remark that Rule
(2) of the token assignment scheme and the asymmetry in the
de�nition of out-heavy edges are used in Claim 2.7. Now we
start the proof by proving Claim 2.4.

CLAIM 2.4. For each S in L, we can assume that S owns
at most one vertex in W .

PROOF. Let S owns w1, . . . , wl ∈ W . Since Bv ≥ 1 for
all v ∈ W , by Step 2b of the algorithm, each vertex wi is of
degree at least 6. Since f(S) = 1, δ(S) can have at most two
heavy edges. Hence, by the token assignment scheme, there are
at least 6r−2 tokens assigned to w1, . . . , wl which have not be
reassigned by Rule (2). Since each vertex in W ∩S needs only
two tokens, there are still 4r − 2 extra tokens left. If r ≥ 2,
then S can collect at least 4 tokens, as required.

Hence suppose w is the only vertex in W owned by S.

CLAIM 2.5. Let S be the set that owns w ∈ W . Then w is
assigned at least �ve tokens, and is assigned exactly �ve tokens
only if:

1. deg(w) = 6, Bw = 1, and there is one heavy edge of
δ(S) in δ(w).

2. deg(w) = 7, Bw = 2, and there are two heavy edges of
δ(S) in δ(w). In this case, δ(S) = δ(S) ∩ δ(w).

PROOF. Since f(S) = 1, δ(S) can have at most two heavy
edges. So w receives one token for each edge incident at w
except for the heavy edges in δ(w) ∩ δ(S). By Step 2b of the
algorithm, w is of degree at least six. Hence, if there is no
heavy edge in δ(S) ∩ δ(w), then w receives six tokens. Sup-
pose that δ(S) ∩ δ(w) has only one heavy edge. Thus w re-
ceives deg(w) − 1 ≥ 5 tokens and exactly �ve tokens only if
deg(w) = 6 and Bw = 1.

Suppose δ(w) ∩ δ(S) has two heavy edges, then Bw =
x(δ(w)) ≥ 2 as there are no 0-edges. So deg(w) ≥ 7 by
Step 2b of the algorithm. Thus, w receives at least deg(w) −
2 ≥ 5 tokens and exactly �ve tokens only if deg(w) = 7,
Bw = 2 and δ(S) = δ(w)∩δ(S) contains two heavy edges.

We now show that when S owns exactly one vertex in W ,
there are enough tokens for S and the vertices in W it owns.

CLAIM 2.6. If S owns one vertex in W , then there are enough
tokens for w and S.

PROOF. Let w be the vertex in W that S owns. By Claim 2.5
w receives at least �ve tokens. Note that w needs only two
tokens if w ∈ T , and S only needs 4 − h tokens where h is
number of out-heavy edges in δ(S). Thus, if w /∈ T or w has
at least six tokens, then there are enough tokens. Also, if δ(S)
has an out-heavy edge or S owns an endpoint, then there are
enough tokens. Furthermore, if S has a Class II or Class III
child, then S can take one excess token from it. Now we show
that the remaining cases cannot happen.

In the remaining cases, all children of S, if any, must be of
Class I. If there is no child of S, since S does not own an end-
point, this implies that χδ(S) = χδ(w) contradicting Lemma 2.1
(2). So assume S has a Class I child, say R. Since δ(S) does
not contain any out-heavy edges and by de�nition there is no
heavy edge with endpoints in distinct Class I children of S,
this implies that every out-heavy edge in δ(R) must have w as
an endpoint. By Claim 2.5, w has exactly �ve tokens only if
Bw ≤ 2. There are two cases:

1. Bw = 1. In this case, we have an heavy edge in δ(w) ∩
δ(S) and also deg(w) = 6 by Claim 2.5. Also, there
is another heavy edge incident at δ(w) from δ(R). But
since there are no 0-edges, Bw = x(δ(w)) = 1 implies
that deg(w) = 2, a contradiction.

2. Bw = 2. In this case, we have two heavy edges in
δ(S) = δ(S)∩δ(w) by Claim 2.5. Since S does not own
an endpoint, this implies that δ(R) ⊂ δ(w). But then
x(δ(R)) = 1, |δ(R)| = 2, and so Bw = x(δ(w)) = 2
implies deg(w) = |δ(S)|+ |δ(R)| = 4, a contradiction.

This completes the proof of Claim 2.6.

We now show that the induction hypothesis holds when S
does not own a vertex of W .
Base Case of Lemma 2.3: S ∈ L is a leaf node in the laminar
family. S gets one token for each edge in δ(S) since S does not
own a vertex in W . Therefore, it gets two tokens only if S is
of Class I, three tokens only if it is of Class II, and at least four
tokens in any other case, as required.
Induction step of Lemma 2.3: The proof is by induction on
number of children of S. Let h be the number of out-heavy
edges in S, and let t be the number of tokens that S can collect.
In the following we say a child R is of Type A if R is of Class Ia
or of Class IIa. Note that we need h + t ≥ 4 if S is not of Type
A, and h + t ≥ 3 if S is of Type A. The following Claim 2.7
is crucial and needs the de�nition of out-heavy edges and Rule
(2) of the token assignment scheme.

CLAIM 2.7. Each Class Ib, Class IIb, or Class III child R
of S can contribute at least 2 to h+ t. And each Class Ia, Class
IIa child can contribute at least 1 to h + t.

PROOF. If R is of Class III, then it has 2 excess tokens. If
R is of Class IIb, then it has 1 excess token and one out-heavy
edge e ∈ δ(R). If e ∈ δ(S), then it contributes 1 to h. Oth-
erwise if both endpoints of e are in S, then it contributes 1 to t
by Rule (2) of the token assignment scheme. Note that, by def-
inition, an edge can be an out-heavy edge of at most one child
of S, and so its contribution to t will not be double counted. If
R is of Class Ib, then it has 2 out-heavy edges. By the same
argument, these edges contributes 2 to h + t. Similarly, if R is
of Class Ia, then it has 1 out-heavy edge, and thus contributes
1 to h + t. Finally, if R is of Class IIa, then it has 1 excess
token.

We now prove the following claim which helps us prove the
various cases of the induction.

CLAIM 2.8. Suppose S is a set which does not own any ver-
tices in W , has α ≥ 1 children all of which are Type A, own
β endpoints and has no out-heavy edges in δ(S) for which one
endpoint is owned by S. If α + β = 3 then S is of Type A.

PROOF. We prove the claim by a case analysis on different
values of α.

1. α = 1. Thus β = 2. Let R be the child of S. Since χδ(R)

and χδ(S), we have e ∈ δ(R)\δ(S) and f ∈ δ(S)\δ(R).
Now, if R is of Class Ia then the out-heavy edge in δ(R)
must also be in δ(S) since S does not own a vertex in W .
In this case S is also of Class Ia. If R is of Class IIa then
xe = xf < 1

2
and δ(S) = δ(R) ∪ {f} \ {e} and S is

also of Class IIa.

2. α = 2. We must have β = 1. Let R1 and R2 be the
children of S. Both R1 and R2 cannot of class Ia since
the out-heavy edge in δ(Ri) must be in δ(S) for i = 1, 2.
But then x(δ(S)) > 1 a contradiction. First suppose R1

is of Class Ia and therefore R2 is of Class IIa. We cannot
have |δ(R1, R2)| ≥ 2 since |δ(R1)| = 2, and also can-
not have |δ(R2)∩δ(S)| ≥ 2 since f(S) = x(δ(S)) = 1.
So the only possibility is |δ(R1, R2)| = |δ(v, R2)| =
|δ(R2) ∩ δ(S)| = 1. Hence |δ(S)| = 2 and thus S is of
Class Ia, as required.

Finally, suppose both R1 and R2 are of Class IIa, then by
a similar argument as in Jain [11] (see Claim 3.5), S is of
Class IIa, as required.

3. α = 3. Let R1, R2 and R3 be the children of S. First we
claim that at most one child of S can be of Class Ia. Since
S does not own a vertex in W each out-heavy edge in
δ(Ri) must also be in δ(S). Since, the out-heavy edges
in Class Ia child have xe > 1

2
there is only one such

edge in δ(S) and therefore S has at most one Class Ia
child. First suppose that S has exactly one Class Ia child,
say R1. Let δ(R1) = {e1, f1}, where e1 is the out-heavy
edge of R1. Assume, without loss of generality, that f1 ∈
δ(R2). Since f(S) = 1, we must have |δ(R2, R3)| = 2;
otherwise |δ(R3)∩δ(S)| ≥ 2 and thus x(δ(S)) = xe1 +
x(δ(R3) ∩ δ(S)) > 1

2
+ 1

2
= 1, since |δ(R3)| = 3 and

each edge e in δ(R3) has xe < 1
2

by the de�nition of a
Class IIa child. Since |δ(R2, R3)| = 2, this implies that
d(S) = 2, and hence S is of Class Ia and therefore Type
A.
In the other case, we have that all three children of S are
of Class IIa. Then, using arguments similar to Jain [11]
(see Claim 3.5), it follows that S must also be of Class
IIa.

Thus the claim follows.

Now we complete the inductive argument based on the num-
ber of children of S.

1. S has at least four children. Then each child can con-
tribute at least 1 to h + t, and so h + t ≥ 4.

2. S has exactly three children. If there is a child which
is not of Type A, then h + t ≥ 4 by Claim 2.7, as re-
quired. So assume S has exactly three Type A children
R1, R2, R3. If S owns an endpoint then also h + t ≥ 4.
So further assume that S does not own an endpoint. Then
S satis�es the conditions of Claim 2.8 and must be of
Type A. Thus h + t ≥ 3 suf�ces for S.

3. S has exactly two children R1 and R2. If both R1 and
R2 are not of Type A, since each can contribute 2 to h+t
by Claim 2.7, then we are done.
Suppose R1 is of Type A and R2 is not of Type A. If S
owns an endpoint then we are done. So further assume
that S does not own an endpoint. We shall prove that this
would not happen. In this case

x(δ(R1) ∩ δ(S)) + x(δ(R1, R2)) = x(δ(R1)) = 1,

x(δ(R1) ∩ δ(S)) + x(δ(R2) ∩ δ(S)) = x(δ(S)) = 1,

x(δ(R2) ∩ δ(S)) + x(δ(R1, R2)) = x(δ(R2)) = 1,

Thus we have,

x(δ(R1) ∩ δ(S)) = x(δ(R1, R2)) = x(δ(R2) ∩ δ(S)) =
1

2
.

R1 cannot be of Class Ia, since otherwise it has an edge
with xe > 1

2
. Also, R1 cannot be of Class IIa, since

|δ(R1)| = 3, either δ(R1, R2) or δ(R2)∩δ(S) is a single
edge e with xe = 1

2
, contradicting R2 is of Class IIa.

So suppose R1 and R2 are of Type A. If S owns two
endpoints, then we are done. By the above argument, S
must owns at least one endpoint, and thus h + t ≥ 3.
Hence assume that S owns exactly one endpoint v and
each heavy edge in δ(S) is in δ(Ri) for some i. Thus
S satis�es the condition of Claim 2.8 and is of Type A.
Thus h + t ≥ 3 suf�ces for S.

4. S has exactly one child R. By linear independence of
χδ(S) and χδ(R), S must own at least two endpoints, and
thus h + t ≥ 3. If R is not of Type A, then h + t ≥ 4,
and we are done. If δ(S) \ δ(R) has an out-heavy edge
or S owns more than two endpoints then also we have
h + t ≥ 4 as required. In the remaining case S satis�es
conditions of Claim 2.8 and S is of Type A. Therefore,
h + t ≥ 3 suf�ces.

This completes the proof of Lemma 2.3. If some root S of
the laminar family is not of Class I, then there is some excess
token left at S by Lemma 2.3. If every root is of Class I, then
there must exist a vertex w ∈ W that is not contained in any
root, and so there is some excess token left at w. This completes
the proof of the relaxed version of Theorem 1.1.

Remarks: To prove Theorem 1.1, the same induction hy-
pothesis and token assignment scheme are used, but a more in-
volved counting argument is needed to show that a set owning
exactly one vertex in W can collect enough tokens. The details
will appear in the journal version of this paper.

3. MINIMUM BOUNDED DEGREE
STEINER NETWORK

In this section we prove Theorem 1.2. The linear program-
ming relaxation is exactly the same as in the previous section,
except that the function f is not necessarily a {0, 1}-valued
function.

3.1 Algorithm
The iterative algorithm is given in Figure 5. The algorithm

is similar to the algorithm for the MINIMUM BOUNDED DE-
GREE STEINER FOREST problem, with the following main dif-
ference. In Step 2a we de�ne a set of high degree vertices
Wh = {v ∈ W |Pe∈δ(v) xe ≥ 6fmax}, where fmax :=

maxS f(S). This set plays the same role as the set of vertices
with degree constraints in the Steiner forest algorithm. Then in
Step 2d we only pick a heavy edge when both of its endpoints
are not high degree vertices. This is the key step to ensure that
the degree bounds are only violated by an additive term.

First we show that the algorithm returns the solution with the
claimed guarantees for cost and degree in Theorem 1.2 assum-
ing that the algorithm always proceed in one of the iterations.
Then we show in Lemma 3.2 that for any basic feasible solution
to the linear program one of the conditions must be satis�ed.

LEMMA 3.1. If in each iteration one of the conditions in
Step 2b, Step 2c or Step 2d is satis�ed then the algorithm re-
turns a Steiner network with cost at most twice the optimal lin-
ear programming solution and degree bound of each vertex is
violated by at most 6rmax + 3.

PROOF. The proof is by a standard inductive argument. We
give a short explanation. Note that f ′ is a weakly supermodu-
lar function. Since we always pick an edge with xe ≥ 1

2
and

Minimum Bounded Degree Steiner Network

1. Initialization F ← ∅, f ′(S) ← f(S) ∀S ⊆ V .

2. While F is not a Steiner network do

(a) Computing a basic optimal solution:
Find a basic optimal solution x satisfying f ′ and
remove every edge e with xe = 0.
Set Wh = {v ∈ W |Pe∈δ(v) xe ≥ 6fmax} and
Bv =

P
e∈δ(v) xe for v ∈ W .

(b) Removing a degree constraint:
For every v ∈ W with degree at most 4, remove
v from W .

(c) Picking an 1-edge:
For each edge e = (u, v) with xe = 1, add e to
F , remove e from G, and decrease Bu, Bv by 1.

(d) Picking a heavy edge with both endpoints low:
For each edge e = (u, v) with xe ≥ 1/2 and
u, v /∈ Wh, add e to F , remove e from G,
and decrease Bu and Bv by 1/2.

(e) Updating the connectivity requirement function:
For every S ⊆ V : f ′(S) ← f(S)− |δF (S)|.

3. Return F .

Figure 5: An iterative algorithm for the MINIMUM
BOUNDED DEGREE STEINER NETWORK problem.

the remaining fractional solution is a feasible solution for the
residual problem, the cost of the solution returned is at most 2
times the cost of the linear programming solution as claimed in
Theorem 1.2.

For the guarantee on the degree bound, �rstly observe that
for any vertex v, we pick at most Bv − 6fmax edges in Step 2b
incident at v since the degree bound of v is reduced by one
whenever such an edge is picked. In Step 2c, we pick at most
12fmax − 1 edges incident at v since the degree bound is re-
duced by 1

2
whenever we include such an edge. Moreover, at

most 4 edges can be picked incident at v once the degree con-
straint for v is removed. Hence, the number of edges picked
which are incident at v is at most

Bv − 6fmax + 12fmax − 1 + 4 = Bv + 6fmax + 3,

as required.
For the correctness of the algorithm, we shall prove the fol-

lowing key lemma in Section 3.2 which will ensure that the
algorithm terminates with a feasible solution and complete the
proof of Theorem 1.2. The rest of this section is devoted to the
proof of Lemma 3.2.

LEMMA 3.2. Let x be a basic feasible solution of (LP), and
W be the set of vertices with degree constraints, and Wh =
{v ∈ W | Pe∈δ(v) xe ≥ 6fmax}. Then at least one of the
following holds.

1. There exists an edge e with xe = 1.

2. There exists an edge e = {u, v} with xe ≥ 1/2 and
u, v /∈ Wh.

3. There exists a vertex v ∈ W such that degE(v) ≤ 4.

3.2 A Counting Argument
We shall prove Lemma 3.2 by a counting argument. Sup-

pose, by way of contradiction, that none of the conditions in
the lemma holds. Then each edge e has 0 < xe < 1, and each
edge e with 1 > xe ≥ 1/2 (we call such an edge a heavy edge)
must have at least one endpoint in Wh, and each vertex in W
must have degree at least �ve. We shall also give two tokens for
each edge (the token assignment scheme is explained below) for
a total of 2|E| tokens. Then, the tokens will be reassigned so
that each member of L gets at least two tokens, each vertex in
T gets at least two tokens and we still have some excess token
left. This will contradict |E| = |L| + |T | of Lemma 2.1, and
thus completes the proof.

The main difference from Jain's analysis is the existence of
heavy edges (with an endpoint in Wh) which our algorithm is
not allowed to pick. In the following, we say a vertex in Wh

is a high vertex. Since there are heavy edges, a set S ∈ L
may only have two edges in δ(S), and hence S may not be able
to collect three tokens. To overcome this, we use a different
token assignment scheme so that a similar induction hypothesis
as Jain's would work.
Token assignment scheme: If e = {u, v} is a heavy edge,
u ∈ Wh and v /∈ W , then v gets two tokens from e and u gets
zero token. For every other edge e, one token is assigned to
each endpoint of e.
Co-requirement: We also need to re�ne the de�nition of co-
requirement for the presence of heavy edges:

coreq(S) =
X

e∈δ(S), xe<1/2

(1/2−xe)+
X

e∈δ(S), xe≥1/2

(1−xe).

It is useful to note that this de�nition reduces to Jain's de�-
nition if every edge e with xe ≥ 1

2
is thought of as two parallel

edges aiming to each achieves a value of 1
2

and sharing the cur-
rent xe value equally (i.e. each gets xe

2
): summing 1

2
− xe

2
over

the two parallel edges gives 1− xe.
After this initial assignment, each vertex in V \Wh receives

at least as many tokens as their degree. Moreover, each vertex
in W \Wh receive at least �ve tokens (as their degree is at least
�ve). Note that a vertex v ∈ Wh might not have any tokens if
all the edges incident at it are heavy edges. By exploiting the
fact that f(S) ≤ fmax, however, we shall show that vertices in
Wh can get back enough tokens during the inductive counting
argument. Now we prove the following lemma which shows
that the tokens can be reassigned as discussed previously.

LEMMA 3.3. For any subtree of L rooted at S, we can re-
assign tokens such that each vertex in T ∩ S gets at least two
tokens, each set in the subtree gets at least two tokens, and the
root S gets at least three tokens. Moreover, root S gets exactly
three tokens only if coreq(S) = 1

2
.

PROOF. We now proceed by induction on the height of the
subtree to prove Lemma 3.3. We �rst prove the base case of the
induction hypothesis where we also show a crucial Claim 3.4,
which handle all sets that own some vertices in W . We then use
this claim in the main induction proof to complete the proof of
Lemma 3.3.
Base Case of Lemma 3.3: S is a leaf node. First suppose that
S ∩ Wh = ∅. If there exists v ∈ S ∩ (W \ Wh), then v
has at least �ve tokens. Since v only needs two tokens, it has

three excess tokens which it can give to S. If there are two such
vertices or S owns another endpoint, then S gets at least four
tokens as required. Otherwise, we have χδ(v) = χδ(S) which
is a contradiction to the linear independence of characteristic
vectors in Lemma 2.1. Hence, we assume S ∩W = ∅. Then S
can get at least δ(S) tokens from the vertices owned by S. Note
that |δ(S)| ≥ 2, as x(δ(S)) is an integer and there is no 1-edge.
If |δ(S)| ≥ 4, then S gets four tokens. If |δ(S)| = 3 and |δ(S)|
contains a heavy edge, then S can get four tokens from the
vertices it owns, since an endpoint v /∈ W of a heavy edge has
2 tokens by the token assignment scheme. If it does not contain
a heavy edge, then S receives three tokens and coreq(S) = 1

2
.

If |δ(S)| = 2, then at least one edge is a heavy edge. If both
edges are heavy then S can get four tokens, else if only one
edge is heavy then it gets three tokens and coreq(S) = 1

2
.

We now consider the case that S owns a vertex in Wh, and
show that S can collect enough tokens for the inductive argu-
ment. The following claim is the key to deal with degree con-
straints, which uses crucially the parameter fmax. This claim
holds even when S is not a leaf in the laminar family, and will
also be used in the induction step.

CLAIM 3.4. Suppose S owns r ≥ 1 vertices in Wh. Then
the number of excess tokens from the children of S, plus the
number of tokens owned by S, plus the number of tokens left
with vertices in Wh owned by S is at least 2r + 4.

PROOF. Let S have c children. As each child has at least
one excess token by the induction hypothesis, if c ≥ 6r then
we have 6r tokens which is at least 2r + 4. Hence, we assume
that c < 6r.

Let B :=
P

v Bv ≥
P

v 6fmax = 6rfmax, where the sum
is over all vertices v ∈ Wh owned by S. Intuitively, vertices
in Wh owned by S would have collected a total of B tokens if
the two tokens at each edge is distributed evenly. But by the
token assignment scheme, vertices in Wh owned by S may not
get any token for heavy edges incident on them. We are going
to show that these vertices can still �get back� the two tokens
they need for the inductive argument.

For a child R of S, as x(δ(R)) = f(R) ≤ fmax, at most
fmax units of B come from the edges in δ(R). Similarly, at
most fmax units of B come from the edges in δ(S). Hence,
there are at least fmax(6r − c − 1) units of B coming from
the edges with both endpoints owned by S. Since there is no
1-edge, there are at least fmax(6r− c− 1) + 1 such endpoints
from those edges. Let e = {u, v} be such an edge with v ∈ Wh

owned by S. If u ∈ W , then both u and v get one token
from e in the initial assignment. If u /∈ W , then u gets two
tokens from e in the initial assignment, but these two tokens
are owned by S. So, the number of tokens owned by S plus
the number of tokens left with vertices in Wh owned by S is at
least fmax(6r−c−1)+1. Furthermore, S can also collect one
excess token from each child. So, the total number of tokens S
can collect is at least fmax(6r − c − 1) + c + 1, which is a
decreasing function of c. As c < 6r, the number of tokens is
minimized at c = 6r − 1, which is at least 6r ≥ 2r + 4.

In the base case when S owns a vertex in Wh, by Claim 3.4 S
can collect 2r + 4 tokens. So these tokens can be redistributed
so that S has 4 tokens and each vertex in Wh owned by S has
2 tokens, which is enough for the induction hypothesis.

Induction Step: The presence of heavy edges with xe ≥ 1
2

introduces some dif�culties in carrying out the inductive argu-
ment in [11]. We need to prove some lemmas which work with
the new notion of co-requirement and the presence of heavy
edges.

For any set S, let wdeg(δ(S))

= |{e ∈ δ(S) : 0 < xe <
1

2
}|+ 2|{e ∈ δ(S) : xe ≥ 1

2
}|

be the weighted degree of S. This de�nition is keeping with
the idea that each edge with xe ≥ 1

2
is thought of as two par-

allel edges. Observe that for any v /∈ W , it receives exactly
wdeg(v) tokens in the initial assignment as it gets one token for
each edge and two tokens for all heavy edges incident at it. S
can take all the tokens for all the vertices it owns which are not
in W . We call these the tokens owned by S. Let G′ = (V, E′)
be the graph formed by replacing each heavy edge e by two
edges e′ and e′′ such that xe′ = xe′′ = xe

2
. Observe that

coreq(S) =
X

e∈δ(S), xe<1/2

(1/2−xe)+
X

e∈δ(S), xe≥1/2

(1−xe)

=
X

e∈δ(S)∩E′
(1/2− xe),

and wdeg(δ(S)) = |δ′(S)| where δ′(S) = {e ∈ E′ : e ∈
δ(S)}. Observe that coreq(S) is integral or semi-integral (half-
integral but not integral) depending on whether δ′(S) is even or
odd. We �rst prove the same technical lemma as in [11] with
the new de�nitions of co-requirements and weighted degrees.

CLAIM 3.5. Let S be a set in L which owns α tokens and
has β children where α+β = 3 and does not own any vertex of
W . Furthermore, each child of S, if any, has a co-requirement
of 1

2
. Then the co-requirement of S is 1

2
.

PROOF. Since each child R of S has a co-requirement of
half, this implies that |δ′(R)| is odd. Note that we assume S
does not own any vertex of W . Using these facts and that α +
β = 3, the same argument as in Exercise 23.3 of [25] can be
used to show that |δ′(S)| is odd. Hence, the co-requirement of
S is semi-integral. Now, we show that coreq(S) < 3

2
proving

the claim. Clearly,

coreq(S) =
X

e∈δ′(S)

(1/2−xe) ≤
X
R

coreq(R)+
X

e

(1/2−xe),

where the �rst sum is over all children R of S and second sum
is over all edges for which S owns a token. Since α + β = 3,
there are a total of three terms in the sum. Since, any term in
the �rst sum is 1

2
and in the second sum is strictly less than

1
2

, if α > 0, we then have coreq(S) < 3
2

which proves the
claim. So, assume α = 0, i.e. S does not own any tokens. In
this case, edges incident to children of S cannot all be incident
at S since otherwise it will violate the linear independence of
characteristic vectors inL in Lemma 2.1, and therefore we have
coreq(S) <

P
R coreq(R) = 3

2
proving the claim.

We are now ready to prove that the induction step holds, in
which S has at least one child. If S owns a vertex in Wh then
Claim 3.4 shows that the induction hypothesis holds. Hence-
forth, we assume that S does not own any vertices of Wh. Sup-
pose S owns some vertices in W \Wh. Each such vertex gets
at least �ve tokens. It needs only two tokens and hence can give

three excess tokens to S. As S has at least one child R, R can
give at least one excess token to S, and hence S gets at least
four tokens as required.

For the rest of the cases, we assume that S does not own any
vertex of W , and hence the remaining case analysis is very sim-
ilar to that of Jain, with a different de�nition of co-requirement.

• S has at least four children. Then S can take one excess
token from each child.

• S has exactly three children. If any child S has two ex-
cess tokens or if S owns a vertex then S can get four
tokens. Else, each of the three children of S has a co-
requirement of half and S owns no vertices. Then, by
Lemma 3.5, we have that S has co-requirement of 1

2
and

it only needs three tokens.

• S has exactly two children R1 and R2. If both of them
have two excess tokens then we are done. Else, let R1

have exactly one token and hence it has co-requirement
of 1

2
by the induction hypothesis. We now claim that S

owns an endpoint. For sake of contradiction suppose S
does not own any endpoint. Then, if there are α edge
between R1 and R2 in E′ (where we replace each heavy
edge by two parallel edges), we have

|δ′(S)| = |δ′(R1)|+ |δ′(R2)| − 2α

As R1 has a co-requirement of half, we have |δ′(R1)| is
odd and hence δ′(S) and δ′(R2) have different parity and
hence different co-requirements. The co-requirements of
S and R2 can differ by at most the co-requirement of R1

which is exactly half. Since, χδ′(S) 6= χδ′(R1)+χd′(R2),
there must be an edge between R1 and R2 and there-
fore, coreq(S) < coreq(R2) + 1

2
. Similarly, χδ′(R2) 6=

χδ′(S)+χδ′(R1) and therefore there is an edge in δ′(S)∩
δ′(R1) which implies that coreq(R2) < coreq(S) + 1

2
.

Thus, their co-requirements are equal which is a contra-
diction. Thus S owns at least one endpoint.
If S owns at least two endpoints or R2 has two excess
tokens, then we have four tokens for S. Otherwise, by
Lemma 3.5, we have that co-requirement of S is half and
it needs only three tokens.

• S has exactly one child R. Since both sets S and R are
tight we have that x(δ(S)) = f ′(S) and x(δ(R)) =
f ′(R). Since χδ(S) and χδ(R) are linearly independent,
subtracting the two equations we have that x(δ(S)∆δ(R))
(∆ denotes symmetric difference) is an positive integer.
Also, there are no 1-edges present and so |δ(S)∆δ(R)| ≥
2, and each edge in the symmetric difference gives one
token to S. Thus S owns at least two endpoints. If S
owns three endpoints or R has two excess tokens then S
can get four tokens. Otherwise, S has exactly two end-
points and exactly one child which has co-requirement of
1
2

. Then by Lemma 3.5, S has a co-requirement of 1
2

.

This completes the proof of Lemma 3.3, which assigns two
tokens to each set in the laminar family L and each vertex in
T which is contained in some set S ∈ L. For vertices in T
which are not contained in any set S ∈ L we also have enough
tokens. Observe that each vertex v ∈ W \Wh receives at least
�ve tokens. For vertices in Wh not contained in any set S ∈ L,

an argument identical to Claim 3.4 with S = V will give at
least two tokens to each vertex in Wh.

Thus we have that 2|E| > 2|L| + 2|T |, which contradicts
Lemma 2.1. Therefore, one of the conditions in Lemma 3.2
holds, and hence we have Theorem 1.2.

Integrality Gap Example. In Figure 6 we show that the lin-
ear program (LP) has an integrality gap of B + Ω(rmax) and
therefore Theorem 1.2 is nearly tight.

x1 x2

y1 y2
yky3

Figure 6: In this example, we have a complete bipartite graph
B = (X, Y, E) where X = {x1, x2} and Y = {y1, . . . , yk}. We
set the connectivity requirements between yi and yj to be 1 for all
i, j, between x1 and x2 to be k

2
, and 0 otherwise. The fractional

solution where all edges have fractional value 1
2

is the optimal solu-
tion, in which the degree of x1 and x2 is equal to k

2
= ∆∗f . On the

other hand, it can be seen that in any integer solution, the degree of
x1 and x2 must be at least 3

4
k = 3

2
∆∗f . This example also shows

that the integrality gap is at least (2, Bv + Ω(rmax)).

4. REFERENCES
[1] A. Agrawal, P. Klein and R. Ravi, When trees collide: an

approximation algorithm for the generalized Steiner
problem on networks, Proceedings of the twenty-third
annual ACM symposium on Theory of computing,
pages: 134�144, 1991.

[2] N. Bansal, R. Khandekar and V. Nagarajan, Additive
guarantees for degree bounded directed network design,
IBM Technical Report 2007.

[3] F. Bauer and A. Varma, Degree-constrained multicasting
in point-to-point networks, Proceedings of the Fourteenth
Annual Joint Conference of the IEEE Computer and
Communication Societies (Vol. 1), INFOCOM '95.

[4] K. Chaudhuri, S. Rao, S. Riesenfeld, and K. Talwar,
What would Edmonds do? Augmenting paths and
witnesses for degree-bounded MSTs, In Proceedings of
APPROX 2005, pp. 26-39.

[5] K. Chaudhuri, S. Rao, S. Riesenfeld, and K. Talwar. Push
relabel and an improved approximation algorithm for the
bounded-degree mst problem , In Proceedings of ICALP
2006.

[6] J.Cheriyan, Santosh Vempala and Adrian Vetta, Network
design via iterative rounding of setpair relaxations,
Combinatorica 26(3):255-275, (2006).

[7] N. Deo and S.L. Hakimi, The shortest generalized
Hamiltonian tree. Proceedings of Sixth Annual Allerton
Conference, (1968), pages 879-888.

[8] T. Feder, R. Motwani, and A. Zhu, k-Connected
spanning subgraphs of low degree, ECCC report 41,
2006.

[9] M. Fürer and B. Raghavachari, Approximating the
minimum-degree Steiner tree to within one of optimal, J.
of Algorithms 17(3):409-423, 1994.

[10] M.X. Goemans, Minimum Bounded-Degree Spanning
Trees, Proceedings of the 47th Annual IEEE Symposium
on Foundations of Computer Science, 2006, pp. 273�282.

[11] K. Jain, A factor 2-approximation algorithm for the
generalized Steiner network problem, Combinatorica,
21:39-60, 2001.

[12] P. Klein, R. Krishan, B. Raghavachari, and R. Ravi,
Approximation algorithms for �nding low-degree
subgraphs, Networks, 44(3): 203-215, (2004).

[13] J. Könemann and R. Ravi, Quasi-polynomial time
approximation algorithm for low-degree minimum-cost
steiner trees. In Proceedings of the 23rd Conference on
Foundations of Software Technology and Theoretical
Computer Science, 2003.

[14] J. Könemann and R. Ravi, A matter of degree: Improved
approximation algorithms for degree bounded minimum
spanning trees, SIAM J. on Computing, 31:1783-1793,
2002.

[15] J. Könemann and R. Ravi, Primal-Dual meets local
search: approximating MSTs with nonuniform degree
bounds, SIAM J. on Computing, 34(3):763-773, 2005.

[16] G. Kortsarz and Z. Nutov, Approximating min-cost
connectivity problems, in Handbook of Approximation
Algorithms and Metaheuristics, Teo�lo Gonzalez (ed.),
Chapman and Hall/CRC, 2006.

[17] L.C. Lau, S. Naor, M. Salavatipour and M. Singh,
Survivable network design with degree or order
constraints, in Proceedings of the 39th ACM Symposium
on Theory of Computing, 2007.

[18] L.C. Lau, R. Ravi, M. Singh, Iterative Relaxations, in
preparation.

[19] Carlos A. S. Oliveira and Panos M. Pardalos, A survey of
combinatorial optimization problems in multicast
routing, Computers and Operations Research, volume
32:8, 2005, pp: 1953�1981.

[20] B. Raghavachari, Algorithms for Finding Low Degree
Structures, in Approximation algorithms, Dorit
Hochbaum (ed.), PWS Publishers Inc., pages 266-295,
1996.

[21] R. Ravi, Madhav V. Marathe, S. S. Ravi, Daniel J.
Rosenkrantz, Harry B. Hunt, III , Approximation
Algorithms for Degree-Constrained Minimum-Cost
Network-Design Problems, Algorithmica 2001.

[22] R. Ravi and M. Singh, Delegate and conquer: An
LP-based approximation algorithm for minimum degree
MSTs. In Proceedings of ICALP 2006.

[23] G. Robins and A. Zelikovsky, Improved steiner tree
approximation in graphs, Proceedings of 10th Annual
ACM-SIAM Symposium on Discrete Algorithms,
ACM-SIAM, pp: 770�779, 2000.

[24] M. Singh and L.C. Lau, Approximating Minimum
Bounded Degree Spanning Trees to within One of
Optimal, In Proceedings of the 39th ACM Symposium
on Theory of Computing, 2007.

[25] V. Vazirani, Approximation Algorithms, Springer, 2001.
[26] Stefan Voß, Problems with Generalized Steiner

Problems. Algorithmica 7(2): 333-335 (1992).

