
Network Design with Weighted Degree Constraints∗

Takuro Fukunaga Hiroshi Nagamochi

Department of Applied Mathematics and Physics,

Graduate School of Informatics, Kyoto University, Japan

{takuro, nag}@amp.i.kyoto-u.ac.jp

Abstract

In an undirected graph G = (V,E) with a weight function w : E×V → Q+, the weighted

degree dw(v;E) of a vertex v is defined as
∑

{w(e, v) | e ∈ E incident with v}. In this

paper, we consider a network design problem with upper-bound on weighted degree of each

vertex. Inputs of the problem are an undirected graph G = (V,E) with E = E1 ∪̇ E2 ∪̇ E3,

weights w1 : E1 × V → Q+, µ : E2 → Q+, ν : E3 → Q+, an edge-cost c : E → Q, a

skew supermodular set function f : 2V → N, and a degree-bound b : A → Q+. A solution

consists of F ⊆ E, and weights wi : Fi × V → Q+ for i ∈ {2, 3}, where Fi stands for

F ∩ Ei. It is defined to be feasible if the cut-size of U in (V, F) is at least f(U) for U ⊂ V ,

w2(e, u) + w2(e, v) = µ(e) for e = uv ∈ F2, {w3(e, u), w3(e, v)} = {0, ν(e)} for e = uv ∈ F3,

and dw1
(v;F1) + dw2

(v;F2) + dw3
(v;F3) ≤ b(v) for each v ∈ V . The goal of this problem is

to find a feasible solution that minimizes its cost
∑

e∈F
c(e).

Relaxing the constraints on weighted degree, we propose a bi-criteria approximation

algorithm based on the iterative rounding, which has been successfully applied to the degree-

bounded spanning tree problem. Our algorithm computes a (2, 9+5θ)-approximate solution,

where θ = max{b(u)/b(v), b(v)/b(u) | uv ∈ E2} if E2 6= ∅ and θ = 0 if E2 = ∅, where (α, β)-

approximate solution has the cost at most α times the optimal and the weighted degree of v

at most βb(v). We also give a (1, 5 + 3θ)-approximation algorithm to the case of f(U) = 1

for U ⊂ V . Moreover, a problem minimizing the maximum weighted degree of vertices is

also discussed.

1 Introduction

Let G = (V,E) be an undirected graph. A weight function w : E × V → Q+ is defined on

pairs of edges and their end vertices, where Q+ is the set of non-negative rational numbers. Let

δ(v;E) denote the set of edges in E incident with v ∈ V . We define the weighted degree of a

vertex v ∈ V in G as
∑

e∈δ(v;E) w(e, v), and denote it by dw(v;E). The weighted degree of G is

defined as maxv∈V dw(v;E).

The weighted degree of a vertex measures load on the vertex in applications. For constructing

a network with balanced load, it is important to consider weighted degree of networks. Take

a communication network for example, and suppose that w(e, v) represents the load for the

communication device on a node v to use a link e incident with v. Then the weighted degree of

v indicates the total load of v for using the network.

In this paper, we consider a network design problem which has upper-bounds on weighted

degrees of vertices as its constraints while the objective is to compute a minimum cost graph with

∗Technical report #2008-005, April 24, 2008.

1

a prescribed connectivity. In the above example of the communication network, this corresponds

to the case in which each node has an upper limit on the load that can be handled on the node.

The problem introduces three types of edges. For an edge e = uv of the first type, weights

w(e, u) and w(e, v) are given as inputs. For an edge e = uv of the second type, weight µ(e)

is given and we can allocate it to u and v. In other words, we decide w(e, u) and w(e, v) so

that w(e, u) + w(e, v) = µ(e). For an edge of the third type, weight ν(e) is given and we can

decide w(e, u) and w(e, v) so that w(e, u) + w(e, v) = ν(e) similarly for the second type while

{w(e, u), w(e, v)} = {0, ν(e)} must hold for the third type.

For stating our problems formally, let us define several notations related to connectivity of

graphs. For a subset U of V and a subset F of E, δ(U ;F) denotes the set of edges in F which

join vertices in U with those in V −U , and F (U) denotes the set of edges in F whose both end

vertices are in U . Let N be the set of natural numbers. For a given set function f : 2V → N on

V , a graph G′ = (V, F) is called f -connected when |δ(U ;F)| ≥ f(U) holds for every non-empty

U ⊂ V . If f(X) + f(Y) ≤ f(X ∩ Y) + f(X ∪ Y) or f(X) + f(Y) ≤ f(X − Y) + f(Y − X)

holds for any X,Y ⊆ V , then f is called skew supermodular. With a skew supermodular set

function, f -connectivity represents a wide variety of connectivity of graphs such as the local

edge-connectivity.

Now we formulate our problem.

Weighted Degree Bounded Survivable Network Problem (WDBoundedNetwork):

Let G = (V,E) be an undirected graph where E is the union of disjoint sets E1, E2, and E3, and

possibly contains parallel edges. For those sets, weights w1 : E1×V → Q+, µ : E2 → Q+ and ν :

E3 → Q+ are respectively defined. As inputs, we are given the graph G = (V,E = E1∪E2∪E3)

with the weights w1, µ and ν, an edge-cost c : E → Q (Q is the set of rational numbers), a skew

supermodular set function f : 2V → N, and a degree-bound b : V → Q+. A solution consists

of F ⊆ E, weights wi(e, u) ∈ Q+ and wi(e, v) ∈ Q+ for each e = uv ∈ Fi, i ∈ {2, 3}, where Fi

denotes F ∩Ei. We call w2 (resp., w3) allocation of µ (resp., ν) when w2(e, u) +w2(e, v) = µ(e)

for e = uv ∈ F2 (resp., {w3(e, u), w3(e, v)} = {0, ν(e)} for e = uv ∈ F3). Throughout this paper,

we let w : F × V → Q+ refer to the function that returns wi(e, v) for e ∈ Fi and v ∈ V . The

solution is defined to be feasible if G′ = (V, F) is f -connected, w2 and w3 are allocations of µ

and ν respectively, and degree constraint dw(v;F) ≤ b(v) for each v ∈ V is satisfied. The goal

of this problem is to find a feasible solution that minimizes its cost
∑

e∈F c(e).

If f(U) = 1 for all non-empty U ⊂ V , then the minimal solutions are spanning trees. We

particularly call such instances weighted degree bounded spanning tree problem (WDBound-

edTree).

Feasible solutions of WDBoundedTree are Hamiltonian paths when E2 = E3 = ∅, w1(e, u) =

w1(e, v) = 1 for all e = uv ∈ E1, and b(v) = 2 for all v ∈ V . This means that it is NP-hard to

test whether an instance of WDBoundedTree (and hence WDBoundedNetwork) is feasi-

ble or not. By this reason, it is natural to relax the degree constraints and consider bi-criteria

approximation algorithms. We say that, for an instance of WDBoundedNetwork and some

α, β ≥ 1, a solution consisting of F ⊆ E, an allocation w2 of µ, and an allocation w3 of ν is an

(α, β)-approximate solution if it satisfies

•
∑

e∈F c(e) ≤ αmin{
∑

e∈F ′ c(e) | F ′ ⊆ E is in a feasible solution}, and

• dw(v;F) ≤ βb(v) for all v ∈ V .

2

Define θ as max{b(u)/b(v), b(v)/b(u) | uv ∈ E2} if E2 6= ∅, and 0 otherwise. Let κ be 1

if E3 6= ∅, and 0 otherwise. For problems WDBoundedTree and WDBoundedNetwork,

we propose algorithms which achieve approximation ratios (1, 4 + 3θ + κ) and (2, 7 + 5θ + 2κ)

respectively in O(L(|V |+ |E|)) time, where L is the time for solving a linear programming. Our

algorithms take the approach successfully applied to the bounded degree spanning tree problem

by Singh and Lau [17] and to the bounded-degree survivable network design problem by Lau

et al. [12], which correspond to instances with uniform w1 and E2 = E3 = ∅ in our problems.

Their approach is based on the iterative rounding originally used for the generalized Steiner

network problem by Jain [8]. Roughly illustrating, they iterate rounding fractional variables in

basic optimal solutions or removing constraints of a linear programming relaxation. The key for

guaranteeing the correctness of the algorithm is an analysis of the structure of tight constraints

which determine the basic optimal solutions. In this paper, we show that this approach remains

useful even if the weighted degree is introduced.

In addition, we also discuss the following variation of the above problem.

Minimum weighted degree survivable network problem (MinimumWDNetwork): An

undirected graph G = (V,E) with E = E1 ∪E2 ∪E3, weights w1 : E1 × V → Q+, µ : E2 → Q+,

ν : E3 → Q+, and a skew supermodular set function f : 2V → N are given. A feasible solution

consists of a f -connected subgraph G′ = (V, F) of G, an allocation w2 : F2 × V → Q+ of µ,

and an allocation w3 : F3 × V → Q+ of ν. The objective is to minimize the weighted degree

maxv∈V dw(v;F) of G′.

Similarly for problem WDBoundedNetwork, we call instances with f(U) = 1 for all

non-empty U ⊂ V minimum weighted degree spanning tree problem (MinimumWDTree).

For problems MinimumWDTree and MinimumWDNetwork, our algorithms achieve ap-

proximation ratios 4 + κ and 7 + 2κ in O(L(|E| + |V | + log(W/ψ)) time if E2 = ∅, where

W =
∑

e=uv∈E1
(w1(e, u) + w1(e, v)) +

∑

e∈E2
µ(e) +

∑

e∈E3
ν(e), and ψ denotes the maximum

denominator of all given weights w1, µ and ν. If E2 6= ∅, our algorithms achieve approximation

ratios 7 + κ + ǫ and 12 + 2κ + ǫ in O(L(|E| + |V | + log(W/(ωǫ))) time for an arbitrary ǫ > 0,

where ω denotes the minimum of all given weights w1, µ and ν.

Previous Works

The bounded degree spanning tree problem has been studied extensively in the last two decades

[2, 3, 10, 11, 15, 16]. For the uniform cost (i.e., c(e) = 1 for e ∈ E), an optimal result was

given by Fürer and Raghavachari [4]. Their algorithm computes a spanning tree which violates

degree upper-bounds by at most one. For general costs, Goemans [6] gave an algorithm to

compute a spanning tree of the minimum cost although it violates degree upper-bounds by at

most two. The algorithm obtains such a spanning tree by rounding a basic optimal solution

of an LP relaxation with the matroid intersection algorithm. Afterwards an optimal result for

general cost was presented by Singh and Lau [17]; Their algorithm computes a spanning tree

of minimum cost which violates degree upper-bounds by at most one. As mentioned above,

their result is achieved by extending the iterative rounding due to Jain [8], who applied it for

designing a 2-approximation algorithm to the generalized Steiner network problem.

After their algorithm, this approach is applied to several problems with degree bounds.

Lau et al. [12] considered the survivable network problem, and proposed an algorithm that out-

puts a network of cost at most twice the optimal and the degree of v ∈ V is at most 2b(v)+3. This

3

result was improved in Lau and Singh [13]. Bansal et al. [1] considered the arborescence problem

and survivable network problem with intersecting supermodular connectivity. Kiraly et al. [9]

generalized bounded degree spanning tree to bounded degree matroid. They also considered

degree bounded submodular flow problem.

There also are several works on the network design problem with weighted degree constraints.

All of these correspond to the case with E2 = E3 = ∅ and w1(e, u) = w2 = (e, v) for e = uv ∈ E1.

Ravi [14] presented an O(log |V |, log |V |)-approximation algorithm to problem WDBound-

edTree and an O(log |V |)-approximation algorithm to problem MinimumWDTree. For prob-

lem MinimumWDTree, Ghodsi et al. [5] presented a 4.5-approximation algorithm under the

assumption that G is a complete graph and c is a metric cost (i.e., triangle inequality holds) while

they also showed that it is NP-hard to approximate it within a factor less than 2. Notice that our

algorithm described in this paper achieves (1, 4)-approximation to problem WDBoundedTree

and 4-approximation to problem MinimumWDTree when E2 = E3 = ∅. Hence it improves

these previous works.

Organization

The rest of this paper is organized as follows. Section 2 presents our algorithms to problems

WDBoundedTree and MinimumWDTree. The algorithms are derived from a good property

of polytopes that give a linear programming relaxation of the problems. Section 2 also shows that

our analysis on the property is tight. Section 3 gives our algorithms to problems WDBound-

edNetwork and MinimumWDNetwork, and shows that our analysis on the property of

polytopes is tight. Section 4 concludes this paper with some remarks.

2 Spanning Trees with Weighted Degree Constraints

In this section, we let I stand for the set of an undirected graphG = (V,E) with E = E1∪E2∪E3,

weights w1 : E1 × V → Q+, µ : E2 → Q+ ν : E3 → Q+, a subset A of V , and b : A→ Q+. Note

that A is a set of vertices whose weighted degrees are bounded by b. We denote by PT(I) the

polytope that consists of vectors x ∈ QE and y ∈ Q(E2∪E3)×V that satisfy

0 ≤ x(e) for all e ∈ E, (1)

0 ≤ y(e, u), y(e, v) for all e = uv ∈ E2 ∪ E3, (2)

y(e, u) + y(e, v) = x(e) for all e = uv ∈ E2 ∪ E3, (3)

x(E) = |V | − 1, (4)

x(E(U)) ≤ |U | − 1 for all U ⊂ V with 2 ≤ |U |, (5)

and

∑

e∈δ(v;E1)

w1(e, v)x(e) +
∑

e∈δ(v;E2)

µ(e)y(e, v) +
∑

e∈δ(v;E3)

ν(e)y(e, v) ≤ b(v) for all v ∈ A, (6)

where x(F) denotes
∑

e∈F x(e) for F ⊆ E. Remark that (5) with U = {u, v}, uv ∈ E implies

x(e) ≤ 1 for all e ∈ E. (7)

Also constraints (4) and (5) with U = V − v imply

x(δ(v;E)) ≥ 1 for all v ∈ V , (8)

4

since x(δ(v;E)) = x(E) − x(E(V − v)) ≥ (|V | − 1) − (|V − v| − 1) = 1.

Observe that PT(I) with A = V is the polytope of a linear programming relaxation of

problem WDBoundedTree. Although (5) has an exponentially many number of constraints,

linear programming over the polytope is solvable in polynomial time by using the ellipsoid

method [2] or by transforming it to a polynomial-size formulation [7].

For a vector x ∈ QE
+, let Ex denote {e ∈ E | x(e) > 0}. We say that polytope PT(I) is

(1, β)-bounded for some β ≥ 1 if every extreme point (x∗, y∗) of the polytope satisfies at least

one of the following:

• There exists a vertex v ∈ V such that |δ(v;Ex∗)| = 1;

• There exists a vertex v ∈ A such that |δ(v;Ex∗)| ≤ β.

If |δ(v;Ex∗)| = 1, then x∗(e) = 1 holds for the edge e ∈ δ(v;Ex∗) by the equalities x(δ(v;Ex∗)) =

x(δ(v;E)) ≥ 1 and x(e) ≤ 1.

In what follows, we see that the iterative rounding can be applied to problem WDBound-

edTree when PT(I) is (1, β)-bounded. By this and the fact that PT(I) is (1, 3)-bounded

(Theorem 3), we can obtain an approximation algorithm for problem WDBoundedTree.

Now let us describe the algorithm which works under the assumption that PT(I) is (1, β)-

bounded.

Algorithm for problem WDBoundedTree

Input: An undirected graph G = (V,E) with E = E1 ∪ E2 ∪ E3, weights w1 : E1 × V → Q+,

µ : E2 → Q+, ν : E3 → Q+, an edge-cost c : E → Q, and a degree-bound b : V → Q+.

Output: A solution consisting of a spanning tree T ⊆ E of G, an allocation w2 : T2 × V → Q+

of µ and an allocation w3 : T3 × V → Q+ of ν, or message “INFEASIBLE”.

Step 1: Set A := V and T := ∅.

• Delete e = uv ∈ E1 from G if w1(e, u) > b(u) or if w1(e, v) > b(v).

• Delete e = uv ∈ E2 from G if µ(e) > b(u) + b(v).

• Delete e = uv ∈ E3 from G if ν(e) > max{b(u), b(v)}.

• If e = uv ∈ E3 and b(u) ≥ ν(e) > b(v), then move e from E3 to E1 with setting

w1(e, u) := ν(e) and w1(e, v) := 0. If e ∈ E3 and b(v) ≥ ν(e) > b(u), then move e

from E3 to E1 with setting w1(e, u) := 0 and w1(e, v) := ν(e).

If PT(I) = ∅, then output “INFEASIBLE”, and terminate;

Step 2: Compute a basic solution (x∗, y∗) that minimizes
∑

e∈E c(e)x
∗(e) over (x∗, y∗) ∈ PT(I).

Step 3: Remove edges in E − Ex∗ from E;

Step 4: If there exists a vertex v ∈ V such that |δ(v;Ex∗)| = 1 (i.e., the edge e = uv ∈ δ(v;Ex∗)

satisfies x∗(e) = 1), then add e to T and delete v from G. Moreover, execute one of the

following operations according to the class of e:

Case of e ∈ E1: If u ∈ A, then set b(u) := b(u) − w1(e, u);

Case of e ∈ E2: Set w2(e, u) := µ(e)y∗(e, u) and w2(e, v) := µ(e)y∗(e, v). If u ∈ A, then

set b(u) := b(u) − w2(e, u).

5

Case of e ∈ E3: If y∗(e, u) ≥ y∗(e, v), then set w3(e, u) := ν(e) and w3(e, v) := 0. If

y∗(e, u) < y∗(e, v), then set w3(e, u) := 0 and w3(e, v) := ν(e). If u ∈ A, then set

b(u) := b(u) − ν(e)y∗(e, u).

Step 5: If there exists a vertex v ∈ A such that |δ(v;Ex∗)| ≤ β, then remove v from A;

Step 6: If |V | = 1, then output (T,w2, w3) as a solution, and terminate. Otherwise, return to

Step 2.

Define θ = max{b(u)/b(v), b(v)/b(u) | uv ∈ E2} if E2 6= ∅, and θ = 0 otherwise. Moreover,

define κ = 1 if E3 6= ∅, and κ = 0 otherwise. We let L denote the time for solving the linear

programming over PT(I).

Theorem 1. If each PT(I) constructed in Step 2 is (1, β)-bounded, then problem WDBound-

edTree is (1, 1 + β(1 + θ) + κ)-approximable in O(L(|V | + |E|)) time.

Proof. It is clear that the algorithm described above runs in O(L(|V | + |E|)) time. In what

follows, we see that the algorithm computes a (1, 1 + β(1 + θ) + κ)-approximate solution.

Observe that the linear programming over PT(I) is still a relaxation of the given instance

after Step 1. Hence the original instance has no feasible solutions when the algorithm outputs

“INFEASIBLE”. Each edge e = uv ∈ E satisfies the following after Step 1:

• If e = uv ∈ E1, then w1(e, u) ≤ b(u) and w1(e, v) ≤ b(v);

• If e = uv ∈ E2, then µ(e) ≤ b(u)+ b(v) ≤ (1+ θ)b(u) and µ(e) ≤ b(u)+ b(v) ≤ (1+ θ)b(v);

• If e = uv ∈ E3, then ν(e) ≤ b(u) and ν(e) ≤ b(v).

Now suppose that PT(I) 6= ∅ after Step 1. We then prove that PT(I) 6= ∅ also throughout

the subsequent iterations and that the spanning tree T outputted by the algorithm satisfies

c(T) ≤ min{cTx | (x, y) ∈ PT(I)} and dw(v;T) ≤ (1 + β(1 + θ) + κ)b(v) for all v ∈ V .

Let ei = uivi denote the i-th edge added to T , Ii = (Gi = (Vi, E
i), w1, µ, ν,Ai, bi) denote I

at the beginning of the iteration in which ei is added to T , and (x∗i , y
∗
i) denote the basic solution

computed in Step 2 of that iteration. We also let I0 stand for I immediately after Step 1 of the

algorithm. Assume that ei is chosen by |δ(vi;Ex∗

i
)| = 1 in Step 4 (i.e., Vi+1 − Vi = {vi}).

By Steps 4 and 5, Ai+1 ⊆ Ai holds, and

bi+1(v) =

bi(v) − w1(ei, v) if v = ui ∈ A and ei ∈ E1,

bi(v) − µ(ei)y
∗
i (ei, v) if v = ui ∈ A and ei ∈ E2,

bi(v) − ν(ei)y
∗
i (ei,) if v = ui ∈ A and ei ∈ E3,

bi(v) otherwise.

(9)

also holds for i ≥ 1. Moreover, each edge in Ei − (Ei+1 ∪ {ei}) is the one such that the

corresponding variable of x∗ becomes 0 in some iteration before ei+1 is chosen in Step 4. These

facts indicate that the projection of (x∗i , y
∗
i) satisfies all constraints in PT(Ii+1). Hence we have

the following:

If PT(Ii) 6= ∅, then PT(Ii+1) 6= ∅ for i ≥ 0; (10)

cTx∗i ≥ c(ei) + min{cTx | (x, y) ∈ PT(Ii+1)} = c(ei) + cTx∗i+1 for i ≥ 1. (11)

(i) We first see that the algorithm outputs a solution. Recall that we are assuming that

PT(I0) 6= ∅. By this and (10), PT(Ii) 6= ∅ for all i ≥ 1. The algorithm then terminates with

6

outputting a spanning tree T = {e1, . . . , e|V |−1}, an allocation w2 : T2 × V → Q+ of µ, and an

allocation w3 : T3 × V → Q+ of ν, by the way of the construction.

(ii) Next we see the optimality of c(T). By applying (11) repeatedly, we obtain

cTx∗1 ≥ c(e1) + cTx∗2 ≥ · · · ≥

|V |−2
∑

i=1

c(ei) + cTx∗|V |−1.

Since |V|V |−1| = 2, x∗|V |−1(e|V |−1) = 1 and x∗|V |−1(e) = 0 for e ∈ E|V |−1 − {e|V |−1} obviously

hold, and hence
∑|V |−2

i=1 c(ei) + cTx∗|V |−1 =
∑|V |−1

i=1 c(ei) = c(T), where T denotes it outputted

by the algorithm. Notice that the algorithm constructs I1 from I0 by relaxing the degree

constraints (i.e., A1 ⊆ A0). Hence min{cTx | (x, y) ∈ PT(I0)} ≥ cTx∗1 holds. Hence we have

min{cTx | (x, y) ∈ PT(I0)} ≥ c(T), as required.

(iii) Fix v as an arbitrary vertex. Now we prove that dw(v;T) ≤ (1+β(1+ θ)+κ)b(v) holds.

Consider Step 4 of the iterations during v ∈ A. Let T ′ be the set of edges that are added to

T during those iterations. By applying (9) repeatedly, we obtain

b(v) ≥
∑

ei∈δ(v;T ′

1
)

w1(ei, v) +
∑

ei∈δ(v;T ′

2
)

µ(ei)y
∗
i (ei, v) +

∑

ei∈δ(v;T ′

3
)

ν(ei)y
∗
i (ei, v).

If ei ∈ δ(v;E2), then w2(ei, v) = µ(ei)y
∗
i (ei, v). If ei ∈ δ(v;E3), then ν(ei)y

∗
i (ei, v) ≥ w3(ei, v)/2

holds because even in the case of w3(ei, v) = ν(ei), y
∗
i (ei, v) ≥ y∗i (ei, u) holds, and hence

y∗i (ei, v) ≥ (y∗i (ei, u) + y∗i (ei, v))/2 = x∗i (ei)/2 = 1/2. Therefore,

∑

ei∈δ(v;T ′

1
)

w1(ei, v) +
∑

ei∈δ(v;T ′

2
)

µ(ei)y
∗
i (ei, v) +

∑

ei∈δ(v;T ′

3
)

ν(ei)y
∗
i (ei, v)

≥ dw1
(v;T ′

1) + dw2
(v;T ′

2) + dw3
(v;T ′

3)/2.

It implies that dw(v;T ′) ≤ b(v) holds if E3 = ∅, and dw(v;T ′) ≤ 2b(v) otherwise.

Consider the iterations after v is removed from A. Let T ′′ denote the set of edges that are

added to T during those iterations. When v is removed fromA in Step 5, the number of remaining

edges incident with v is at most β by the condition in Step 5. Hence |δ(v;Ta)| ≤ β holds. We

have already seen that, after Step 1, e = uv ∈ E1 satisfies w1(e, v) ≤ b(v), e = uv ∈ E2 satisfies

w2(e, v) ≤ µ(e) ≤ (1 + θ)b(v), and e = uv ∈ E3 satisfies w3(e, v) ≤ ν(e) ≤ b(v). So dw(v;T ′′) ≤

β(1 + θ)b(v). Because dw(v;T) = dw(v;T ′) + dw(v;T ′′), we have dw(v;T) ≤ (1 + β(1 + θ))b(v)

if E3 = ∅, and dw(v;T) ≤ (2 + β(1 + θ))b(v) otherwise. This completes the claim.

Now we let W be
∑

e=uv∈E1
(w(e, u)+w(e, v))+

∑

e∈E2
µ(e)+

∑

e∈E3
ν(e), ψ be the maximum

denominator of weights w, µ and ν, and ω be the minimum of weights w, µ and ν. The following

theorem shows that the algorithm to problem WDBoundedTree gives an algorithm to problem

MinimumWDTree.

Theorem 2. Suppose that problem WDBoundedTree is (α′, β′)-approximable for some α′ and

β′. For an arbitrary ǫ > 0, problem MinimumWDTree is (β′ + ǫ)-approximable in O(L(|E| +

|V | + log(W/(ωǫ))) time. If E2 = ∅, then it is β′-approximable in O(L(|E| + |V | + log(W/ψ))

time.

Proof. For an r ∈ Q, define Gr as the subgraph obtained from G by deleting each edge e = uv ∈

E1 such that max{w1(e, u), w1(e, v)} > r, each edge e ∈ E2 such that µ(e) > 2r, and each edge

7

e ∈ E3 such that ν(e) > r. Let br : V → Q+ be the function such that br(v) = r for all v ∈ V ,

and Ir = (Gr, w1, µ, ν,A = V, br).

We denote min{r ∈ Q+ | PT(Ir) 6= ∅} by R, and the minimum weighted degree of the given

instance by OPT. For given ǫ, define ǫ′ = ωǫ. Since ω ≤ OPT, we have ǫ′ ≤ ǫOPT. Since the

characteristic vector of an optimal solution to the given instance of problem MinimumWDTree

satisfies all constraints of PT(IOPT), we have R ≤ OPT. It is possible to compute a value R′

such that R ≤ R′ ≤ R + ǫ′ by the binary search on interval [0,W], which needs to solve the

linear programming over PT(Ir) log(W/ǫ′) times.

Let T be an (α, β)-approximate solution to the instance of problem WDBoundedTree

consisting of IR′ and an arbitrary edge-cost c. By the β-approximability of T , we have dw(v;T) ≤

βbR′(v) ≤ β(R+ǫ′) ≤ β(1+ǫ)OPT for any v ∈ V . This implies that T is a β(1+ǫ)-approximate

solution to problem MinimumWDTree.

When E2 = ∅, set ǫ so that ǫ′ < ψ holds. In this case, if R′ satisfies R ≤ R′ ≤ R + ǫ′, then

R′ = R. SuchR′ can be computed by solving the linear programming over log(W/ǫ′) = log(W/ψ)

times. Hence we have dw(v;T) ≤ βbR′(v) ≤ βOPT for any v ∈ V , which implies that T is a

β-approximate solution.

Now we see that PT(I) is (1, 3)-bounded. First let us observe that the key property of tight

constraints observed in [17] also holds in our setting.

Lemma 1. For any extreme point (x∗, y∗) of PT(I), there exists a laminar family L = {U ⊆

V | |U | ≥ 2} (i.e., any U,U ′ ∈ L satisfy either U ⊆ U ′, U ′ ⊆ U , or U ∩ U ′ 6= ∅) and X ⊆ A

such that |Ex∗ | ≤ |L| + |X|.

Proof. By the definitions of x∗ and y∗, the number of variables is equal to the dimension of

the vector space spanned by the coefficients vectors of tight constraints in PT(I). If x∗(e) = 0

(resp., y∗(e, v)), then fix the variable x(e) (resp., y(e, v)) to 0 and remove the corresponding

tight constraint of (1) (resp., (2)). We can also remove tight constraints of (3) by fixing y(e, u)

to x(e) − y(e, v). Then the number of remaining variables, which is at least |Ex∗ |, is equal to

the dimension of the vector space spanned by the tight constraints of (4), (5) and (6).

Let F = {U ⊆ V | |U | ≥ 2, x∗(E(U)) = |U | − 1} (i.e., family of vertex subsets defining tight

constraints of (4) and (5)) and X = {v ∈ A |
∑

e∈δ(v;E1) w1(e, v)x
∗(e)+

∑

e∈δ(v;E2) µ(e)y∗(e, v)+
∑

e∈δ(v;E3) ν(e)y
∗(e, v) = b(v)} (i.e., set of vertices defining tight constraints of (6)).

For a subfamily F ′ of F , we denote by span(F ′ ∪ X) the vector space spanned by the

coefficient vectors of constraints corresponding to F ′ and X. (Notice that coefficient vectors

corresponding to X are changed from the original by the above operations.) In [17], it is proven

that a maximal laminar subfamily L of F satisfies span(L ∪ X) = span(F ∪ X). Since the

dimension of span(L ∪X) is at most |L| + |X|, we have |Ex∗ | ≤ |L| + |X|, as required.

Theorem 3. Polytope PT(I) is (1, 3)-bounded for any I.

Proof. Suppose the contrary, i.e., all vertices v ∈ V satisfy |δ(v;Ex∗)| ≥ 2 and all vertices v ∈ A

satisfy |δ(v;Ex∗)| ≥ 4. Then |Ex∗ | ≥ (2(|V | − |A|) + 4|A|)/2 = |V | + |A|.

On the other hand, let L be an arbitrary laminar family of subsets U of V with |U | ≥ 2, and

X be an arbitrary subset of A. By their definitions, |L| ≤ |V |−1 and |X| ≤ |A| hold. Therefore

we have |L| + |X| ≤ |V | + |A| − 1 < |Ex∗ |, a contradiction to Lemma 1.

Corollary 1. Problem WDBoundedTree is (1, 4 + 3θ + κ)-approximable in O(L(|V | + |E|))

time. Problem MinimumWDTree is (4 + κ)-approximable in O(L(|E|+ |V |+ log(W/ψ)) time

8

1

2

3

4

5

6

1
2

3

10/3

14/3

5 5

10/3

14/3

Figure 1: A counterexample for (1, 2)-boundedness of PT(I)

if E2 = ∅, and is (7 + κ+ ǫ)-approximable in O(L(|E| + |V | + log(W/(ωǫ))) time for any ǫ > 0

otherwise.

Proof. Immediate from Theorems 1, 2 and 3.

It is a natural question to ask whether the (1, 3)-boundedness of PT(I) can be improved

to (1, 2)-boundedness. Let us discuss this assuming that E2 = E3 = ∅. Unfortunately (1, 2)-

boundedness does not hold even if w1(e, u) = w1(e, v) = 1 for all e = uv ∈ E1 as mentioned

in [17]. Singh and Lau [17] weakened the (1, 2)-boundedness by replacing its first condition with

the following:

• There exists an edge e ∈ E such that x∗(e) = 1.

They then designed their algorithm by observing that the property holds for more general

polytopes than PT(I). This approach is also not useful for our setting because there exists a

counterexample, which we will give in the rest of this section.

Let G be the graph in Figure 1. We let w1(e, u) = w1(e, v) for all e = uv ∈ E1 and integers

beside edges in the figure represent their weights. Rational numbers beside vertices represent the

values of b for them. Let A = V , and the set of |E| = 6 tight constraints consist of constraints

(4), (5) for the set of white vertices and for the set of black vertices, and (6) for all vertices.

Then these tight constraints determine an extreme point x∗ of PT(I) such that

x∗(e) =

{

2/3 for edges represented by solid lines,

1/3 for edges represented by dotted lines.

Clearly, x∗(e) < 1 for any edge e ∈ E and minv∈A=V |δ(v;Ex∗)| = 3.

3 Survivable Network with Weighted Degree Constraints

In this section, we let I stand for the set of an undirected graphG = (V,E) with E = E1∪E2∪E3,

weights w1 : E1 × V → Q+, µ : E2 → Q+, ν : E3 → Q+, a skew supermodular set function

f : 2V → N, a subset A of V , and b : A→ Q+. We denote by PN(I) the polytope that consists

of vectors x ∈ QE and y ∈ Q(E2∪E3)×V that satisfy

0 ≤ x(e) ≤ 1 for all e ∈ E, (12)

0 ≤ y(e, u), y(e, v) for all e = uv ∈ E2 ∪ E3, (13)

y(e, u) + y(e, v) = x(e) for all e = uv ∈ E2 ∪ E3, (14)

x(δ(U)) ≥ f(U) for all non-empty U ⊂ V, (15)

9

and

∑

e∈δ(v;E1)

w1(e, v)x(e) +
∑

e∈δ(v;E2)

µ(e)y(e, v) +
∑

e∈δ(v;E3)

ν(e)y(e, v) ≤ b(v) for all v ∈ A. (16)

Observe that PN(I) with A = V is the polytope of a linear programming relaxation of problem

WDBoundedNetwork.

We say that PN(I) is (α, β)-bounded for some α, β ≥ 1 if every extreme point (x∗, y∗) of the

polytope satisfies at least one of the following:

• There exists an edge e ∈ Ex∗ such that x∗(e) ≥ 1/α;

• There exists a vertex v ∈ A such that |δ(v;Ex∗)| ≤ β.

Notice that (1, β)-boundedness of PN(I) is weaker than that of PT(I).

Now we describe the algorithm which works under the assumption that PN(I) is (α, β)-

bounded.

Algorithm for problem WDBoundedNetwork

Input: An undirected graph G = (V,E) with E = E1 ∪ E2 ∪ E3, weights w1 : E1 × V → Q+,

µ : E2 → Q+, ν : E3 → Q+, an edge-cost c : E → Q, a skew supermodular set function

f : 2V → N, and a degree-bound b : V → Q+

Output: A solution consisting of an f -connected subgraph (V, F) of G, an allocation w2 :

F2 ×V → Q+ of µ and an allocation w2 : F2 ×V → Q+ of ν, or message “INFEASIBLE”.

Step 1: Set A := V and F := ∅.

• Delete e = uv ∈ E1 from G if w1(e, u) > b(u) or if w1(e, v) > b(v).

• Delete e = uv ∈ E2 from G if µ(e) > b(u) + b(v).

• Delete e = uv ∈ E3 from G if ν(e) > max{b(u), b(v)}.

• If e = uv ∈ E3 and b(u) ≥ ν(e) > b(v), then move e from E3 to E1 with setting

w1(e, u) := ν(e) and w1(e, v) := 0. If e ∈ E3 and b(v) ≥ ν(e) > b(u), then move e

from E3 to E1 with setting w1(e, u) := 0 and w1(e, v) := ν(e).

If PN(I) = ∅, then output “INFEASIBLE”;

Step 2: Compute a basic solution (x∗, y∗) that minimizes
∑

e∈E c(e)x
∗(e) over (x∗, y∗) ∈ PN(I);

Step 3: Remove edges in E − Ex∗ from E;

Step 4: If there exists an edge e = uv ∈ E such that x∗(e) ≥ 1/α, then add e to F , delete e

from E, set f(U) := f(U) − 1 for all U ⊂ V with e ∈ δ(U). Moreover, execute one of the

following operations according to the class of e:

Case of e ∈ E1: If u ∈ A, then set b(u) := b(u) − w1(e, u)x
∗(e). If v ∈ A, then set

b(v) := b(v) −w1(e, v)x
∗(e).

Case of e ∈ E2: Set w2(e, u) := µ(e)y∗(e, u)/x∗(e) and w2(e, v) := µ(e)y∗(e, v)/x∗(e). If

u ∈ A, then set b(u) := b(u) − µ(e)y∗(e, u). If v ∈ A, then set b(v) := b(v) −

µ(e)y∗(e, v).

10

Case of e ∈ E3: If y∗(e, u) ≥ y∗(e, v), then set w3(e, u) := ν(e) and w3(e, v) := 0. If

y∗(e, u) < y∗(e, v), then set w3(e, u) := 0 and w3(e, v) := ν(e). If u ∈ A, then set

b(u) := b(u) − ν(e)y∗(e, u). If v ∈ A, then set b(v) := b(v) − ν(e)y∗(e, v);

Step 5: If there exists a vertex v ∈ A such that |δ(v;Ex∗)| ≤ β, then remove v from A;

Step 6: If E = ∅, then output F as a solution, and terminate. Otherwise, return to Step 2.

Now as in Section 2, we define θ = max{b(u)/b(v), b(v)/b(u) | uv ∈ E2} if E2 6= ∅, and θ = 0

otherwise. Moreover define κ = 1 if E3 6= ∅, and κ = 0 otherwise. We let L denote the time for

solving the linear programming over PN(I).

Theorem 4. If each PN(I) constructed in Step 2 is (α, β)-bounded, then problem WDBound-

edNetwork is (α,α(1 + κ) + β(1 + θ))-approximable in O(L(|V | + |E|)) time.

Proof. It is clear that the algorithm described above runs in O(L(|V | + |E|)) time. In what

follows, we see that the algorithm computes an (α,α(1 + κ) + β(1 + θ))-approximate solution.

Observe that the linear programming over PN(I) is still a relaxation of the given instance

after Step 1. Hence the original instance has no feasible solutions when the algorithm outputs

“INFEASIBLE”. Each edge e = uv ∈ E satisfies the following after Step 1:

• If e = uv ∈ E1, then w1(e, u) ≤ b(u) and w1(e, v) ≤ b(v);

• If e = uv ∈ E2, then µ(e) ≤ b(u)+ b(v) ≤ (1+ θ)b(u) and µ(e) ≤ b(u)+ b(v) ≤ (1+ θ)b(v);

• If e = uv ∈ E3, then ν(e) ≤ b(u) and ν(e) ≤ b(v).

In what follows, suppose that PN(I) 6= ∅ after Step 1. We then prove that PN(I) 6= ∅

also throughout the subsequent iterations and that the edge set F outputted by the algorithm

satisfies c(F) ≤ αmin{cTx | (x, y) ∈ PN(I)} and dw(v;F) ≤ (α(1 + κ) + β(1 + θ))b(v) for all

v ∈ V .

Let ei = uivi denote the i-th edge added to F , Ii = (Gi = (V,Ei), w1, µ, ν, fi, Ai, bi) denote I

at the beginning of the iteration in which ei is added to T , and (x∗i , y
∗
i) denote the basic solution

computed in Step 2 of that iteration. We also let I0 stand for I immediately after Step 1 of

the algorithm, and assume that the algorithm outputs F = {e1, . . . , ej}. By Steps 4 and 5,

Ai+1 ⊆ Ai holds, and

bi+1(v
′) =

bi(v
′) − w1(ei, v

′)x∗i (ei) if v′ ∈ A and ei ∈ E1,

bi(v
′) − µ(ei)y

∗
i (ei, v

′) if v′ ∈ A and ei ∈ E2,

bi(v
′) − ν(ei)y

∗
i (ei, v

′) if v′ ∈ A and ei ∈ E3,

bi(v
′) otherwise.

(17)

also holds for v′ ∈ {ui, vi}, i ≥ 1. Moreover, all edges in Ei+1 −Ei except ei are those such that

corresponding variable of x∗ took 0 in some iteration before ei+1 is chosen in Step 4. These facts

indicate that the projection of (x∗i , y
∗
i) satisfies all constraints in PN(Ii+1). Hence we have the

following:

If PN(Ii) 6= ∅, then PN(Ii+1) 6= ∅ for i ≥ 0; (18)

cTx∗i ≥ c(ei)x
∗
i (ei) + min{cTx | (x, y) ∈ PN(Ii+1)} ≥ c(ei)/α+ cTx∗i+1for i ≥ 1. (19)

(i) We first see that the algorithm outputs a solution. Recall that we are assuming that

PN(I0) 6= ∅. By this and (18), PN(Ii) 6= ∅ holds for all 1 ≤ i ≤ j. Hence the algorithm terminates

11

with outputting an f -connected subgraph F = {e1, . . . , ej}, an allocation w2 : F2 × V → Q+ of

µ, and an allocation w3 : F3 × V → Q+ of ν, by the way of construction.

(ii) Next we see the α-approximability of c(F). By applying (19) repeatedly, we have

cTx∗1 ≥ c(e1)x
∗
1(e1) + cTx∗2 ≥ · · · ≥

j−1
∑

i=1

c(ei)x
∗
i (ei) + cTx∗j ≥

j
∑

i=1

c(ei)x
∗
i (ei).

Notice that x∗i (ei) ≥ 1/α holds for all 1 ≤ i ≤ j by the condition of Step 4. Hence,

j
∑

i=1

c(ei)x
∗
i (ei) ≥ c(F)/α,

implying that αcTx∗1 ≥ c(F). Notice that the algorithm constructs I1 from I0 by relaxing the

degree constraints (i.e., A1 ⊆ A0). Hence min{cTx | (x, y) ∈ PT(I0)} ≥ cTx∗1. Therefore we

have αmin{cTx | (x, y) ∈ PN(I0)} ≥ c(F), as required.

(iii) Fix v as an arbitrary vertex. Now we prove that dw(v;F) ≤ (α(1 + κ) + β(1 + θ))b(v)

holds.

Consider Step 4 of the iterations during v ∈ A. Let F ′ be the set of edges that are added to

F during those iterations. By applying (17) repeatedly, we obtain

b(v) ≥
∑

ei∈δ(v;F ′

1
)

w1(ei, v)x
∗
i (ei) +

∑

ei∈δ(v;F ′

2
)

µ(ei)y
∗
i (ei, v) +

∑

ei∈δ(v;F ′

3
)

ν(ei)y
∗
i (ei, v).

If ei ∈ δ(v;E2), then w2(ei, v) = µ(ei)y
∗
i (ei, v)/x

∗
i (ei). If ei ∈ δ(v;E3), then ν(ei)y

∗
i (ei, v) ≥

w3(ei, v)x
∗
i (ei)/2 holds because even in the case of w3(ei, v) = ν(ei), y

∗
i (ei, v) ≥ y∗i (ei, u) holds,

and hence y∗i (ei, v) ≥ (y∗i (ei, u) + y∗i (ei, v))/2 = x∗i (ei)/2. Recall that x∗i (ei) ≥ 1/α. Therefore,

∑

ei∈δ(v;F ′

1
)

w1(ei, v)x
∗
i (ei) +

∑

ei∈δ(v;F ′

2
)

µ(ei)y
∗
i (ei, v) +

∑

ei∈δ(v;F ′

3
)

ν(ei)y
∗
i (ei, v)

≥ dw1
(v;F ′

1)/α + dw2
(v;F ′

2)/α + dw3
(v;F ′

3)/(2α).

It implies that dw(v;F ′) ≤ αb(v) holds if E3 = ∅, and dw(v;F ′) ≤ 2αb(v) otherwise.

Consider the iterations after v is removed from A. Let F ′′ denote the set of edges that

are added to F during those iterations. When v is removed from A in Step 5, the number of

remaining edges incident with v is at most β by the condition in Step 5. Hence |δ(v;Fa)| ≤ β

holds. We have already seen that, after Step 1, e = uv ∈ E1 satisfies w1(e, v) ≤ b(v), e = uv ∈ E2

satisfies w2(e, v) ≤ µ(e) ≤ (1 + θ)b(v), and e = uv ∈ E3 satisfies w3(e, v) ≤ ν(e) ≤ b(v). So

dw(v;F ′′) ≤ β(1 + θ)b(v). Because dw(v;F) = dw(v;F ′) + dw(v;F ′′), we have dw(v;F) ≤

(α+ β(1 + θ))b(v) if E3 = ∅, and dw(v;F) ≤ (2α+ β(1 + θ))b(v) otherwise. This completes the

claim.

The following theorem shows that the algorithm for problem WDBoundedNetwork gives

an algorithm for problem MinimumWDNetwork. Now we define W , ψ, and ω as in Section 2.

Theorem 5. Suppose that problem WDBoundedNetwork is (α′, β′)-approximable for some

α′ and β′. For an arbitrary ǫ > 0, problem MinimumWDNetwork is (β′ + ǫ)-approximable in

O(L(|E|+|V |+log(W/(ωǫ))). If E2 = ∅, then it is β′-approximable in O(L(|E|+|V |+log(W/ψ)).

Proof. It can be derived from Theorem 4 as Theorem 2 is derived from Theorem 1.

12

Now we see that polytope PN(I) is (2, 5)-bounded. First let us see that the key property of

tight constraints observed in [8] also holds in our setting.

Lemma 2. Let (x∗, y∗) be any extreme point of PN(I) and suppose that x∗(e) < 1 for all

e ∈ E. There exists a laminar family L = {U ⊂ V | U 6= ∅, x∗(δ(U)) = f(U)} and X = {v ∈

A |
∑

e∈δ(v;E1) w1(e, v)x
∗(e) +

∑

e∈δ(v;E2) µ(e)y∗(e, v) +
∑

e∈δ(v;E3) ν(e)y
∗(e, v) = b(v)} such that

characteristic vectors of δ(U ;Ex∗) for all U ∈ L are linearly independent and |Ex∗ | ≤ |L|+ |X|.

Proof. By the definitions of x∗ and y∗, the number of variables is equal to the dimension of

the vector space spanned by the coefficients vectors of tight constraints in PN(I). If x∗(e) = 0

(resp., y∗(e, v)), then fix the variable x(e) (resp., y(e, v)) to 0 and remove the corresponding

tight constraint of (12) (resp., (13)). We can also remove tight constraints of (14) by fixing

y(e, u) to x(e)−y(e, v). Then the number of remaining variables, which is at least |Ex∗ |, is equal

to the dimension of the vector space spanned by the tight constraints of (15) and (16).

Let F = {U ⊂ V | U 6= ∅, x∗(δ(U)) = f(U)} (i.e., family of vertex subsets defining tight

constraints of (15)) and X = {v ∈ A |
∑

e∈δ(v;E1) w1(e, v)x
∗(e) +

∑

e∈δ(v;E2) µ(e)y∗(e, v) +
∑

e∈δ(v;E3) ν(e)y
∗(e, v) = b(v)} (i.e., set of vertices defining tight constraints of (16)). For a

subfamily F ′ of F , we denote by span(F ′) the vector space spanned by the characteristic vectors

of δ(U ;Ex∗), U ∈ F ′. In [8], it is proven that a maximal laminar subfamily F ′ of F satisfies

span(F ′) = span(F). So bases of span(F ′) and X gives the required L and X.

Theorem 6. Polytope PN(I) is (2, 5)-bounded for any I.

Proof. Suppose the contrary, i.e., all edges e ∈ Ex∗ satisfy x∗(e) < 1/2, and all vertices v ∈ A

satisfy |δ(v;Ex∗)| ≥ 6.

Let L and X be those in Lemma 2. We define a child-parent relationship between all elements

in L and X as follows: For U ∈ L or v ∈ X, define its parent as the inclusion-wise minimal

element in L that contains it if any. Note that when v ∈ X and {v} ∈ L, {v} is the parent of v.

We assign one token to each end vertex of edges in Ex∗ . Define the co-requirement of U ∈ L

as |δ(U ;Ex∗)|/2−f(U). Following the approach in [8], we observe that it is possible to distribute

these tokens to all elements in L and in X so that

• each element having the parent owns two tokens,

• each element having no parent owns at least three tokens,

• and it owns exactly three only if its co-requirement equals to 1/2.

First two of these mean that the number of all tokens is more than 2(|L| + |X|). Since the

number of tokens is exactly 2|Ex∗ |, this indicates that |Ex∗ | > |L| + |X|, which contradicts

|Ex∗ | ≤ |L| + |X|.

We prove the claim inductively. The base case is when the elements have no child. An

element v ∈ X owns at least six tokens by |δ(v;Ex∗)| ≥ 6. An element U ∈ L with no child

owns at least three tokens because |δ(U ;Ex∗)| ≥ 3 by x∗(e) < 1/2 for each e ∈ δ(U ;Ex∗) and

f(U) ≥ 1. It owns exactly three tokens if and only if |δ(U ;Ex∗)| = 3. Since |δ(U ;Ex∗)| = 3

indicates that f(U) = 1, it means the co-requirement |δ(U ;Ex∗)|/2 − f(U) equals to 1/2 .

Let us consider the case in which an element U ∈ {L} has some children. If U has children

from X, then it is possible to redistribute tokens so that U owns at least four tokens, and each

child owns two tokens. If the children of U are all from L, then the argument is proven in [8].

13

v1

v2

v3
v4

v5

v6

v7

v8

v9

v10

v11

v12

v13

v14
v15

v16

v17

v18

Figure 2: A counterexample for (2, 4)-sparseness of PN(I)

Corollary 2. Problem WDBoundedNetwork is (2, 7 + 5θ+ 2κ)-approximable in O(L(|V |+

|E|)). Problem MinimumWDNetwork is (12+2κ+)-approximable in O(L(|E|+|V |+log(W/ψ))

if E2 = ∅, and is (12 + 2κ + ǫ)-approximable in O(L(|E| + |V | + log(W/(ωǫ))) for any ǫ > 0

otherwise.

Proof. Immediate from Theorems 4, 5 and 6.

Lau et. al. [12] designed their algorithm for the case with w1(e, u) = w1(e, v) = 1, e = uv ∈ E1

and E2 = E3 = ∅ by observing that PN(I) is (2, 4)-bounded with such instances. However, this

does not hold in our problem even if w1(e, u) = w1(e, v) for all e = uv ∈ E1 and E2 = E3 = ∅ as

indicated by the following counterexample; Let G be the graph in Figure 2, f(U) = 1 for all non-

empty U ⊂ V , and A = V . We suppose that |E| = |E1| = 42 tight constraints consists of (15) for

all singletons, for {vi, vi+1, vi+2} with i = 1, 4, 7, 10, 13, 16, and for {vi, vi+1, vi+2, vi+3, vi+4, vi+5}

with i = 1, 7, 13, and (16) for all vertices. We set w1 so that the above tight constraints are

linearly independent. Setting b appropriately, we then have a basic optimal solution x∗ such

that

x∗(e) =

1/3 for edges represented by black solid lines,

1/6 for edges represented by dotted lines,

1/12 for edges represented by gray solid lines.

Notice that x∗(e) < 1/2 for all e ∈ E and |δ(v;Ex∗)| ≥ 5 for all v ∈ V .

4 Concluding Remarks

In this paper, we have presented approximation algorithms for the network design problems

which has upper-bound on weighted degree of each vertex. We also have seen that it is hard to

to improve the approximation ratios by our approach based on the iterative rounding method.

For further investigation, it may be interesting to extend problems which have constraints on

degrees of vertices (e.g. matching problem, edge cover problem) by introducing the weighted

degree.

14

Acknowledgements

This work was partially supported by Grant-in-Aid for Scientific Research from the Ministry of

Education, Culture, Sports, Science and Technology of Japan.

References

[1] N. Bansal, R. Khandekar, and V. Nagarajan, Additive guarantees for degree bounded directed

network design, tech. rep., IBM Research, 2007.

[2] K. Chaudhuri, S. Rao, S. Riesenfeld, and K. Talwar, What would Edmonds do? augmenting

paths and witnesses for degree-bounded MSTs, in Proceedings of 8th International Workshop

on Approximation Algorithms for Combinatorial Optimization Problems, Lecutre notes in

computer science 3624, 2005, pp. 26–39.

[3] K. Chaudhuri, S. Rao, S. Riesenfeld, and K. Talwar, A push-relabel algorithm for ap-

proximating degree bounded MSTs, in Proceedings of 33rd International Colloquium on

Automata, Languages and Programming, Lecture Notes in Computer Science 4051, 2006,

pp. 191–201.

[4] M. Fürer and B. Raghavachari, Approximating the minimum-degree Steiner tree to within

one of optimal, Journal of Algorithms, 17 (1994), pp. 409–423.

[5] M. Ghodsi, H. Mahini, K. Mirjalali, S. O. Gharan, A. S. Sayedi R., and M. Zadimoghaddam,

Spanning trees with minimum weighted degrees, Information Processing Letters, 104 (2007),

pp. 113–116.

[6] M. X. Goemans, Minimum bounded-degree spanning trees, in Proceedings of the 47th Annual

IEEE Symposium on Foundations of Computer Science, 2006, pp. 273–282.

[7] M. Grötschel, L. Lovász, and A. Schrijver, Geometric Algorithms and Combinatorial Opti-

mization, Springer-Verlag, 1988.

[8] K. Jain, A factor 2 approximation algorithm for the generalized Steiner network problem,

Combinatorica, 21 (2001), pp. 39–60.

[9] T. Kiraly, L. C. Lau, and M. Singh, Degree bounded matroids and submodular flows, in

Proceedings of 13th Conference on Integer Programming and Combinatorial Optimization,

2008, to appear.

[10] J. Könemann and R. Ravi, A matter of degree: Improved approximation algorithms for

degree-bounded minimum spanning trees, SIAM Journal on Computing, 31 (2002), pp. 1783–

1793.

[11] J. Könemann and R. Ravi, Primal-dual meets local search: approximating MST’s with

nonuniform degree bounds, in Proceedings of the 35th annual ACM symposium on Theory

of computing, 2003, pp. 389–395.

[12] L. C. Lau, J. S. Naor, M. Singh, and M. R. Salavatipour, Survivable network design with

degree or order constraints, in Proceedings of the 39th ACM Symposium on Theory of

Computing, 2007, pp. 651–660.

15

[13] L. C. Lau and M. Singh, Additive approximation for bounded degree survivable network

design, in Proceedings of the 40th ACM Symposium on Theory of Computing, 2008, to

appear.

[14] R. Ravi, Steiner Trees and Beyond: Approximation Algorithms for Network Design, PhD

thesis, Department of Computer Science, Brown University, 1993.

[15] R. Ravi, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, and H. B. Hunt III, Many birds

with one stone: Multi-objective approximation algorithms, in Proceedings of the 25th ACM

Symposium on Theory of Computing, 1993, pp. 438–447.

[16] R. Ravi and M. Singh, Delegate and conquer: An LP-based approximation algorithm for

minimum degree MSTs, in Proceedings of 33rd International Colloquium on Automata,

Languages and Programming, Lecture Notes in Computer Science 4051, 2006, pp. 169–180.

[17] M. Singh and L. C. Lau, Approximating minimum bounded degree spanning trees to within

one of optimal, in Proceedings of the 39th ACM Symposium on Theory of Computing,

2007, pp. 661–670.

16

